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ABSTRACT
Most of the complexity of common data mining tasks is due
to the unknown amount of information contained in the data
being mined. The more patterns and correlations are con-
tained in such data, the more resources are needed to ex-
tract them. This is confirmed by the fact that in general
there is not a single best algorithm for a given data mining
task on any possible kind of input dataset. Rather, in order
to achieve good performances, strategies and optimizations
have to be adopted according to the dataset specific char-
acteristics. For example one typical distinction in transac-
tional databases is between sparse and dense datasets. In
this paper we consider Frequent Set Counting as a case study
for data mining algorithms. We propose a statistical anal-
ysis of the properties of transactional datasets that allows
for a characterization of the dataset complexity. We show
how such characterization can be used in many fields, from
performance prediction to optimization.

1. INTRODUCTION
Mining association rules in databases has received a great

deal of attention in the last decade [6] [4]. This is due both
to the straight applicability of the knowledge extracted, but
also to the challenging performance issues posed by the prob-
lem complexity. If we limit ourselves to the most compu-
tational expensive part of the association mining problem,
namely Frequent Set Counting (FSC), we can find tenths of
algorithms proposed in the last years [1] [9] [11] [5] [7] [8].
They all adopt different strategies depending on the problem
parameter values (namely the minimum support threshold
s) and on the input dataset characteristics. This last feature
turns out to be the most difficult to control.

One important property of the input dataset, is its den-
sity. The notion of density, although not yet formally de-
fined in the literature, plays a crucial role in determining
the best strategy for solving the FSC problem. A dataset is
said to be dense, when most transactions tend to be similar
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among them: they have about the same length and contain
mostly the same items. When dealing with such datasets,
several optimizations can be very effective, like using com-
pressed data structures both for the dataset and for itemsets
representation. Conversely, for sparse datasets where trans-
actions differ a lot one from another, in general it might be
useful to apply some pruning technique in order to get rid
of useless items and transactions. The apriori knowledge
of a dataset density or sparsity can provide useful hints for
global strategy decision in FSC algorithms. Another impor-
tant issue is to determine the range of support threshold
within which a relevant number of frequent itemsets will be
found. When nothing is known about the dataset, the only
option is to start mining with a high support value and then
decrease the threshold until we find a number of frequent
itemsets that fulfill our requirements. It would be nice if we
could have an idea of the dataset behavior for all possible
supports, before starting the actual - potentially expensive
- computation.

In a recent work [3] Goethals et al. have analytically found
a tight upper bound for the number of candidates that can
be generated during the steps of a level-wise algorithm for
FSC. From the knowledge of the number of frequent pat-
terns found at step k, it is possible to know an upper bound
for the candidates that will be generated at step k +1. This
permits to estimate with a good level of accuracy the max-
imal pattern length, i.e. how many steps will be performed
by the algorithm. Such knowledge is used by the authors to
postpone the actual counting of candidates as much as pos-
sible, thereby limiting the number of database scans, with-
out the risk of a combinatorial explosion in the number of
candidates. Rather than focusing on the characteristics of
level-wise FSC algorithms, namely candidate generation, the
problem we want to address in this paper is that of finding
a good characterization of a dataset complexity, in terms of
the number of patterns satisfying a given support threshold,
and of its density, in order to apply adequate optimization
strategies.

In [10], Zaki et al. study the length distribution of fre-
quent and maximal frequent itemsets for synthetic and real
datasets. This characterization allows them to devise a pro-
cedure for the generation of benchmarking datasets that re-
produce the length distribution of frequent patterns. To the
best of our knowledge, there are no previous work addressed
at a characterization of a dataset density and at how this
characterization can be used for optimization purposes.

In this paper, we will try to answer the questions of whether
a dataset is dense or sparse and which is the support range
of potential interest for a given dataset. We introduce a



macroscopic property of datasets - that we call H - whose
behavior can be used to characterize the dataset density,
thereby allowing for specific optimizations to be effectively
applied. Such quantity allows also to easily build a model
from which it is possible to estimate the number of frequent
patterns contained in the dataset for any value of s, with-
out executing the FSC algorithm. In Section 2 we introduce
the definition of H and formalize the notion of density. In
Section 3 we show how H can be effectively used in FSC
algorithms for strategy decision and support range determi-
nation.

2. DEFINITIONS
We introduce a formal definition of the notion of dataset

density, i.e. of how much the transactions inside the dataset
resemble one with another. Intuitively, the more dense a
dataset is, more its transactions will differ only for very few
items.

The following two limit cases give an idea of the intuitive
meaning of density. The maximum density that a dataset
can have corresponds to all the transactions being identical.
On the other hand, minimum density corresponds to each
transaction containing only one single item and each item
appearing in only one transaction. In Figure 1 we represent
the dataset in binary format, where to each of the N trans-
actions we associate a row in a matrix whose elements are 0
or 1 according to whether the corresponding item - ranging
from 1 to M - is present or not in the transaction. We see
that maximum density - Fig. 1 (a) - corresponds to a ma-
trix whose elements are all 1, and minimum density - Fig. 1
(b) - to the identity matrix, with ones only along the main
diagonal. In the following we will respectively refer to these
two extreme datasets as D (for dense) and S (for sparse).
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Figure 1: Limit cases of maximum (a) and minimum
(b) density for transactional datasets in binary for-
mat.

Real datasets of course in general exhibits an intermediate
behavior with respect to the limit cases. In Figure 2 we
plotted the bitmap representation1 of some real datasets and
a synthetic one.

From this simple representation it is already possible to
isolate some qualitative feature of a dataset. It is for ex-
ample evident that BMS View 1 and the synthetic dataset
(Figure 2 (c) and (d) respectively) are more sparse than
the others. Nevertheless, while the synthetic dataset shows
a regular structure, with an almost uniform distribution of
ones in the bitmap, BMS View 1 exhibits a more compli-
cated internal structure, with two extremely long transac-
tions and a few items appearing in almost all transactions
(two almost full rows and columns respectively).
1The bitmap is obtained by evaluating the number of occur-
rences of each distinct item in a subset of N/M transactions
and assigning a level of gray proportional to such count.

(a) (b)

(c) (d)

Figure 2: Bitmap representation of datasets:
(a) chess; (b) mushroom; (c) BMS View 1; (d)
T25I10D10K. All images have been rescaled to the
same squared size.

We would like to be able to characterize datasets with a
measurable quantity from which it is possible to tell how
dense a dataset is, i.e. if it is closer to D or to S. The
simplest choice we can make, is to consider the fraction of
1’s in the dataset matrix, which is 1 for D and 1/M for S.
Such definition is not sufficient to capture all the interesting
dataset features from the point of view of FSC, since two
transactions with the same number of items will bring the
same contribution to the overall density, regardless of how
they actually resemble one another.

A more interesting behavior is exhibited by the average
support of frequent items, plotted in Figure 3. For almost
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Figure 3: Average support

all values of the support threshold - along the x axis - dense
datasets maintain an average support of frequent items that
is sharply higher than the threshold, i.e. curves correspond-
ing to dense datasets reside well above the y = x line. On
the other hand, for sparse dataset only a few items have
support high enough to pass the threshold filter, even for
low values of the threshold. We can use this qualitative
analysis two define two classes of datasets. Dense datasets
are characterized by an average support for frequent items
that is much higher than the minimum support threshold
for almost all supports. How much higher is a question that
remains unsolved at this level of analysis.

Although we can qualitatively classify a dataset into sparse



vs. dense categories using the average support of frequent
items, we still have the same problem stated above: trans-
action similarity is not taken into account and therefore we
have little or no chance at all to have any hints on the fre-
quent patterns contained in the dataset. To have a more
accurate estimate of transaction similarity, we should mea-
sure the amount of information contained in each transac-
tion. The information relevant to the FSC problem is the
collection of itemsets contained in a transaction. Our idea is
to consider the dataset as a transaction source and measure
the entropy of the signal - i.e. the transactions - produced
by such source. For a given length k, we define the following
quantity:

Hk(s) = −
(M

k )X
i=1

[[pi > s]] pi log pi (1)

where M is the total number of distinct items in the
dataset and pi is the probability of observing itemset i, of
length k, in the dataset, s is the minimum support threshold.
The truth function [[expr]] which equals 1 if expr is TRUE
and 0 otherwise, is used to select only the frequent item-
sets. The probabilities pi are the normalized frequencies:
pi = fiP

j fj
with fi being equal to the number of transac-

tion where the itemset appears, divided by the number N
of transactions in the dataset.

The intuitive idea behind Equation 1 is that of considering
the information contained a transaction source. By selecting
only frequent itemsets, we consider the minimum support
threshold influence on the problem complexity: the lower
the minimum support, the harder the mining process.

Definition 1 holds for any itemset length k. Measuring
Hk(s) for all possible k corresponds to running an FSC al-
gorithm. We therefore ask if it is possible to capture useful
information on the dataset properties only considering small
values for k.

We begin considering H1, i.e. the entropy of single items,
which is the simplest Hk to be evaluated. We consider the
two limit cases S and D with no minimum support filter
applied. In the first dataset fi = 1/M,∀i so pi = 1/M,∀i
and H1(S) = log(M). For the dense dataset, fi = 1,∀i so
pi = 1/M∀i and again H1(D) = log(M). Therefore using
H1 we are not able to distinguish between the two limit
cases which are interesting for our purposes. This is due
to the fact that with H1 we cannot differentiate between
the contribution of a transaction of, say, nt items and nt

transactions each one with only one of the items of the first
transaction. For example a dataset composed by one trans-
action D = {{1, 2, 3}} and a dataset composed by three
transactions D′ = {{1}, {2}, {3}} would have the same H1.

The problem is that in H1 we are not considering any
correlation among items, i.e. we have no notion of trans-
action. The simplest level of correlation we can consider is
that of single items correlations. We therefore go one step
further and consider k = 2. Now for the sparse dataset S
we have fi = pi = 0,∀i, since the itemsets we consider are
the M(M − 1)/2 pairs of M items. So H2(S) = 0. On the
other hand, for D we have fi = 1, pi = 2/(M(M − 1))∀i
and H2(D) = log(M(M − 1)/2). Using H2 it is possible
to distinguish between D and S. Of course also H2 fails
to fully characterize a dataset. The following two datasets:
D = {{1, 2, 3, 4}} and D′ = {{1, 2}, {3, 4}} are again indis-
tinguishable looking only at the pair occurrences, as in H2,

and H3 should be considered instead.
In Figure 4 we plotted the measured value of H2(s) for

different supports and different datasets. We used publicly
available datasets 2 which are often referred to as de-facto
standards for the benchmarking of FSC algorithms. It is
therefore possible to identify two different qualitative behav-
iors. A subset of all the datasets considered, while increasing
s, only a little variation in H2 is observed. For another sub-
set of the datasets considered this is not true. This second
group exhibits a rapid decay of H while increasing s.
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Figure 4: Entropy of known datasets.

It is important to notice that the variation of H2 is signifi-
cant more than its absolute value. In other words in order to
compare the characteristics of two datasets, it is necessary
to evaluate H2(s) for several supports.

We can conclude this part of our analysis by stating that
datasets whose pair-entropy remains almost constant (in log-
arithmic scale) will be characterized by a higher density.
We call such datasets dense and classify them in the D
class. Conversely, the other class will be the one of sparse
S datasets.

We conclude this section with an observation on the com-
putational cost of such measure. The evaluation of H1 only
involves single items frequnecies, therefore a single dataset
scan is required while the amount of memory is of O(M).
TO evaluate H2 it is necessary to know the pair frequencies,
which implies a further dataset scan or, if enough memory
is available - O(M2) - everything can be evaluated in the
first scan.

3. USING ENTROPY
We show in this section how the measure of H can effec-

tively be used to improve the performance of FSC algorithms
(Sec. 3.1) or to give hints on the potentially interesting
support range for a given dataset (Sec. 3.2) or, finally, to
estimate the quality of a sampling algorithm (Sec. 3.3).

3.1 Strategy decisions
Knowledge of a dataset density can be of great impor-

tance for improving the performance of an FSC algorithm.
Different optimization strategies can be adopted according
to whether the dataset is known to be dense or sparse. We
embedded such strategies in our FSC algorithm [8] which
dynamically adapts its behavior according to the dataset
statistical properties. The results obtained show that its
possible and effective to apply specific optimizations depend-
ing on the dataset features. In the case of sparse datasets, it
is useful to prune the dataset and remove infrequent items

2http://kdd.ics.uci.edu



Dataset smin ∼ smax (%)
connect 45 ∼ 90
chess 15 ∼ 70
mushroom 1 ∼ 20
pumsb 60 ∼ 95
pumsb star 25 ∼ 60
T25I20D100K 0.55 ∼ 1
BMS View 1 0.06 ∼ 0.4

Table 1: Support range for each dataset in Figure
5. Ten support values were considered within each
range.

and short transactions. When mining dense dataset, on the
other hand, pruning can turn out to be too expensive with
respect to the benefits adduced. Compact data structures
can rather be adopted in order to increase locality in item-
set support counting and to reduced the amount of memory
required to store them. Since these strategies are already
discussed elsewhere [8], although we did not use the same
statistical analysis proposed in this paper, we are not going
to enter into any further detail here.

3.2 Support range determination
One interesting feature of H is that it allows to determine

the support range of interest for a given dataset. When ap-
plying an FSC algorithm to an unknown dataset, one option
is to starts with a very high support threshold and then keep
running the FSC algorithm while lowering the threshold, un-
til a satisfactory number of frequent patterns is found. This
approach has the strong limitation that we do not know in
advance how long can the computation last, even for high
minimum supports, and, most importantly, it is not possi-
ble to determine how many patterns the FSC algorithm will
find for a given support until we run it. Since H is related
to the correlation among transactions, one could think that
its variation can be related to the variation in the number
of patterns found. In fact, this conjecture is confirmed by
experimental verification.

We considered the total number of frequent itemsets found
for different datasets and supports, and measured the cor-
responding value of H2(s). For each dataset we considered
10 different support values in different ranges, reported in
Table 1.

We found that the logarithm of the total number of fre-
quent patterns is linearly correlated with H2(s). In Fig. 5
(a) a linear fit obtained by a minimum square regression, is
superimposed to each data series.

Therefore, if we wanted to know how many frequent pat-
terns are contained in a dataset for a given support thresh-
old, we could run the FSC algorithm with a few values of
high supports (corresponding to small execution times), and
then extrapolate the unknown number of frequent patterns
for the requested support. Conversely, from the same linear
regression, we could determine which is the support that will
produce a given number of frequent patterns. In Figure 5
(b) we plot the average error on the estimate of the number
of frequent itemsets using an increasing number of points
from the plot in Figure 5 (a). For each dataset, we per-
formed a linear fit taking a variable number of points from
the curves in Fig. 5 (a), starting from the highest supports,
i.e lowest values for H(s). Then we evaluated the average
error obtained when estimating the number of frequent pat-
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Figure 5: Total number of frequent patterns found
versus the entropy (a) and the error obtained on the
estimate of the total number of candidates (b)

terns for the rest of the points in the plot. More precisely, if
we have n different values of H(s) (in our case n = 10), and
the n corresponding values for the total number of frequent
patterns |F |, we perform the linear fit for j (j ≥ 3) of such
(H, log(|F |)) pairs. From the fit parameters we can estimate
the values of the remaining n−j−1 number of frequent pat-
terns |F |. The error of the estimate, as a function of j, is
defined as:

error(j) =
1

n− j − 1

n−1X
i=j+1

|F |i − |F |i
|F |i

· 100% (2)

From Figure 5 (b) we can see that for most datasets al-
ready for four points the errors are lower than 40%, which
permits to have a reasonable confidence when predicting the
total number of frequent itemsets. In particular, by running
the FSC algorithm with four values of s - that can be cho-
sen in order to minimize the execution time - we are able to
predict the total number of frequent patterns found for any
value of s, within a 40% confidence.

3.3 Sampling
A common problem that arises in datamining when deal-

ing with huge amount of data is that of obtaining an ap-
proximate result by applying an algorithm on a sample of
the input dataset. In this case it is of interest to determine
how accurate is the knowledge extracted from the sample.
Several sampling algorithms have been proposed with vari-
able level of accuracy [2] [12], yet the problem remains of
determining whether a sample is a good representative of
the entire dataset or not, without running the mining algo-
rithm.

We argue that a sample whose entropy, as given by Eq.
1, is similar to the entropy of the entire dataset, will more
likely produce the same amount of frequent itemsets. We
show how the results from a set of experiments on synthetic
and real datasets, confirm this conjecture. We define:



∆Os =

kmaxX
k

(|Fk| − |F s
k |)Pkmax

k |Fk|
∗ 100% (3)

where kmax is the maximum between the maximal length
of frequent itemsets in the sample and in the real dataset,
Fk is the set of frequent itemsets of length k in the entire
dataset and F s

r is the same in the sample.
In terms of metrics 3, a good sample will have ∆Os = 0.

In a series of tests, we show how the quality of a sample
can be actually correlated with a variation in the entropy.
In Figure 6 we plotted ∆O versus the relative variation of
entropy ∆H, for 200 random samples of six datasets. A
linear fit is superimposed to the experimental data, showing
the effective correlation between the two quantities.
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Figure 6: Correlation between variation in the out-
put and variation in the entropy. Points refer to
different random samples of the same dataset.

This result suggests that the entropy of a dataset is a good
measure of the relevant statistical properties of a dataset.
Even without running the complete FSC algorithm, we can
use entropy to measure how representative a sample is. An
interesting problem would be of finding an entropy preserv-
ing sampling algorithm.

4. CONCLUSIONS
Most of the computational complexity of Data Mining

computations comes from the unknown amount of informa-
tion to be extracted from the input datasets and to proper-
ties of the dataset which remain unknown until the mining
algorithm is fully executed. This is the case for the well
known dense/sparse classification of transactional datasets.

As a consequence, unpredictable execution times of the
DM algorithms make it difficult to find general performance
results. Moreover, the analyst is often forced to an explo-
rative approach in the search of the support range of interest
for each dataset.

We introduced a statistical property of a dataset, called
H, that allows to formally define the notion of density. Since

H is related to the order present in the dataset, we also
demonstrated how it is possible to use such quantity for
other purposes like determine the support range of inter-
est for a given datasetor estimate the quality of a sample
obtained by a sampling algorithm.
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