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Abstract

Data Mining (DM) is the science of extracting useful and non-trivial information from
the huge amounts of data that is possible to collect in many and diverse fields of science,
business and engineering. Due to its relatively recent development, Data Mining still poses
many challenges to the research community. New methodologies are needed in order to
mine more interesting and specific information from the data, new frameworks are needed
to harmonize more effectively all the steps of the mining process, new solutions will have
to manage the complex and heterogeneous source of information that is today available for
the analysts.

A problem that has always been claimed as one of the most important to address,
but has never been solved in general terms, is about the performance of DM systems.
Reasons for this concern are: (i) size and distributed nature of input data; (ii) spatio
temporal complexity of DM algorithms; (iii) quasi real-time constraints imposed by many
applications. When it is not possible to control the performance of DM systems, the actual
applicability of DM techniques is compromised.

In this Thesis we focused on the performance of DM algorithms, applications and
systems. We faced this problem at different levels. First we considered the algorithmic
level. Taking a common DM task, namely Frequent Set Counting (FSC), as a case study,
we performed an in depth analysis of performance issues in FSC algorithms. This led us
to devise a new algorithm for solving the FSC problem, that we called Direct Count and
Intersect (DCI). We also proposed a more general characterization of transactional datasets
that allow to forecast, within a reasonable range of confidence, important properties in the
FSC process. From preliminary studies, it seems that measuring the entropy of a dataset
can provide useful hints on the actual complexity of the mining process on such data.

Performance of DM systems is particularly important for those system that have strong
requirements in terms of response time. Web servers are a notable example of such systems:
they produce huge amounts of data at different levels (access log, structure, content). If
mined effectively and efficiently, the knowledge extracted from these data can be used
for service personalization, system improvement or site modification. We illustrate the
application of DM techniques to the web domain and propose a DM system for mining
web access log data. The system is designed to be tightly coupled with the web server and
process the input stream of http requests in an on-line and incremental fashion.

Due to the intrinsically distributed nature of the data being mined and by the commonly
claimed need for high performance, parallel and distributed architectures often constitute
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the natural platform for data mining applications. We parallelized some DM algorithms,
most notably the DCI algorithm. We designed a multilevel parallel implementation of
DCI, explicitly targeted at the execution on cluster of SMP nodes, that adopts multi-
threading for intra node and message passing for the inter node communications. To face
the problems of resource management, we also study the architecture of a scheduler that
maps DM applications onto large scale distributed environments, like Girds. We devised a
strategy to predict the execution time of a generic DM algorithm and a scheduling policy
that effectively takes into account the cost of transferring data across distributed sites.

The specific results obtained in studying single DM kernels or applications can be
generalized to wider classes of problems that allows the data miner to abstract from the
architectural details of the application (physical interaction with the data source, base
algorithm implementation) and concentrate only on the mining process. Following this
generic thinking, a Data Mining Template Library (DMTL) for frequent pattern mining was
designed at the Rensselaer Polytechnic Institute, Troy (NY) USA, under the supervision
of prof. M. J. Zaki. We joined the DMTL project during 2002 fall. We present the main
features of DMTL and a preliminary experimental evaluation.



Sommario

Il Data Mining (DM) è la disciplina che si occupa dell’estrazione di informazioni utili e non
banali dall’immensa mole di dati che è possibile collezionare in vari campi della scienza e
del mondo industriale e commerciale. Il suo relativamente recente sviluppo lascia ancora
aperti molti problemi che la comunità scientifica è chiamata ad affrontare e risolvere. Vi è
la necessità di nuove metodologie per estrarre informazioni più significative dai dati, nuovi
framework si rendono indispensabili per armonizzare tutti i passi del processo di mining,
nuove soluzioni sono necessarie per il trattamento di dati complessi ed eterogenei.

Un problema che è sempre stato individuato come di centrale importanza ma mai risolto
in termini generali è quello relativo alle prestazioni di sistemi di Data Mining. Le ragioni
di questo interesse sono: (i) le dimensioni e la natura distribuita dei dati di input; (ii) la
complessità spazio-temporale degli algoritmi di Data Mining; (iii) la richiesta di proprietà
quasi di tempo reale per molte applicazioni di DM. Quando non è possibile controllare le
prestazioni di sistemi di DM, la reale applicabilità di tali tecniche risulta pregiudicata.

In questa tesi ci concentriamo sulle prestazioni di algoritmi, sistemi e applicazioni di
DM.

L’attività di ricerca si è principalmente focalizzata sullo studio delle performance di una
tecnica di Data Mining molto utilizzata nelle applicazioni pratiche: l’estrazione di insiemi
di item frequenti in database transazionali, o Frequent Set Counting (FSC).

Nonostante negli ultimi anni siano stati proposti numerosi algoritmi di FSC che per-
mettono di raggiungere prestazioni sempre migliori, ancora il problema del controllo delle
performance di tali algoritmi resta irrisolto. Questo principalmente dovuto al fatto che la
complessità della computazione realizzata dipende in modo difficilmente predicibile dalle
correlazioni interne al dataset di input e alle sue proprietà statistiche.

Partendo da un’analisi dettagliata delle prestazioni dei migliori algoritmi proposti re-
centemente, è stato possibile progettare e implementare un nuovo algoritmo di FSC (Direct
Count and Intersect) (DCI) che in numerosi casi si rivela essere il più performante.

Per poter avere maggiore e completo controllo sulle performance, è inoltre in studio
l’analisi di alcune proprietà statistiche dei dataset di input, che permettano di poter predire
il costo del FSC su un certo dataset. L’idea di questo studio è quella di caratterizzare la
complessità dell’applicazione dell’algoritmo di FSC su un certo dataset, sulla base delle
proprietà statistiche del dataset stesso. Alcuni risultati preliminari lasciano dedurre che la
misura dell’entropia del dataset sia un buon indicatore dello sforzo computazionale richiesto
ad un algoritmo di FSC. Sembra quindi possibile poter utilizzare questa misura per la
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definizione di strategie di calcolo nell’algoritmo sequenziale (pruning versus compression),
di load balancing in quello parallelo e sampling nella versione approssimata dell’algoritmo.

Le performance dei sistemi di Data Mining sono particolarmente importanti in quei
sistemi che pongono forti requisiti in termini di tempo di risposta. I server web sono un
esempio di tali sistemi: la grande quantità di dati prodotti a vari livelli (log, struttura,
contenuto) contiene informazioni potenzialmente utili per personalizzazioni, ottimizzazioni
o modificazioni del sito. Viene studiato un sistema di web mining in grado di estrarre
informazione sul comportamento degli utenti di un sito dall’analisi degli accessi precedenti
e sulla base di questa conoscenza, personalizzare le pagine richieste. Il sistema proposto è
realizzato in modo da inserirsi nell’ordinario funzionamento del server web e processare lo
stream di richieste httpd in maniera incrementale.

Architetture di calcolo parallele e distribuite costituiscono spesso la piattaforma di cal-
colo naturale in applicazioni di Data Mining sia per la natura inerentemente distribuita dei
dati, sia per la necessità generale di alte prestazioni. In questa tesi viene presentata la paral-
lelizzazione dell’algoritmo DCI, ottimizzata per cluster di SMPs, che adotta un paradigma
muti-threading per le comunicazioni interne al nodo e message-passing per quelle tra nodi.
Inoltre, viene studiata l’architettura di uno scheduler che mappa applicazioni strutturate
di Data Mining su piattaforme distribuite su scala geografica (Knowledge Grid). Viene
sviluppata una strategia di scheduling che ottimizza sia il costo computazionale che i costi
di trasferimento dei dati.

Un altro filone di ricerca2 riguarda la realizzazione di sistemi verticali di data mining
che generalizzino i risultati ottenuti in casi specifici ad una classe più ampia di problemi
e permettano di gestire tutte le fasi del processo di data mining, dall’accesso ai dati fino
all’estrazione della conoscenza.

Il Data Mining ToolKit (DMTL) è una libreria C++ che permette di sviluppare algo-
ritmi di data mining, rendendo trasparenti all’utente problematiche come l’accesso fisico ai
dati o l’implementazione di strutture dati specifiche per un certo problema. L’architettura
basata sui template rende inoltre il DMTL flessibile all’estensione verso nuovi pattern e
strutture dati.

2Questa attività è stata svolta al Rensselaer Polytechnic Institute, sotto la supervisione del prof. M. J.
Zaki.



Chapter 1

Introduction

1.1 Why performance matters in Data Mining

The extraction of useful and non-trivial information from the huge amount of data that is
possible to collect in many and diverse fields of science, business and engineering, is called
Data Mining (DM). DM is part of a bigger framework, referred to as Knowledge Discovery
in Databases (KDD), that covers a complex process, from data preparation to knowledge
modeling. Within this process, DM techniques and algorithms are the actual tools that
analysts have at their disposal to find unknown patterns and correlation in the data.

Typical DM tasks are classification (assign each record of a database to one of a pre-
defined set of classes), clustering (find groups of records that are close according to some
user defined metrics) or association rules (determine implication rules for a subset of record
attributes). A considerable number of algorithms have been developed to perform these
and others tasks, from many fields of science, from machine learning to statistics through
neural and fuzzy computing. What was a hand tailored set of case specific recipes, about
ten years ago, is now recognized as a proper science [81].

It is sufficient to consider the remarkable wide spectrum of applications where DM
techniques are currently being applied to understand the ever growing interest from the
research community in this discipline. Started as little more than a dry extension of
marketing techniques, DM is now bringing important contributions in crucial fields of
investigations. Among the traditional sciences we mention astronomy, high energy physics,
biology and medicine that have always provided a rich source of applications to data
miners [37]. An important field of application for data mining techniques is also the
World Wide Web [61]. The Web provides the ability to access one of the largest data
repositories, which in most cases still remains to be analyzed and understood. Recently,
Data Mining techniques are also being applied to social sciences, home land security and
counter terrorism [48] [97].

In this Thesis we will distinguish among a DM algorithm which is a single DM kernel,
a DM application, which is a more complex element whose execution in general involves
the execution of several DM algorithms, and a DM system, which is the framework within
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12 CHAPTER 1. INTRODUCTION

which DM applications are being executed. A DM system is therefore composed of a
software environment that provides all the functionalities to compose DM applications,
and a hardware back-end onto which the DM applications are executed.

Due to its relatively recent development, Data Mining still poses many challenges to
the research community. New methodologies are needed in order to mine more interesting
and specific information from the data, new frameworks are needed to harmonize more
effectively all the steps of the mining process, new solutions will have to manage the
complex and heterogeneous source of information that is today available for the analysts.

A problem that has always been claimed as one of the most important to address, but
has never been solved in general terms, is about the performance of DM systems. Reasons
for this concern are:

• The amount of data that it is typically necessary to deal with. Huge, enormous ,
massive are the terms most commonly used to refer to volumes of data that can
easily exceed the terabyte limit;

• Data are generally distributed on a geographical scale. Due to its dimension, but also
for other reasons (i.e. privacy, redundancy), data cannot in general be assumed to be
placed in a single site. Rather, DM systems have to deal with inherently distributed
input sources;

• DM algorithms are often complex both in time and space. Moreover, the complexity
of such algorithms depend not only on external properties of the input data, like size,
number of attributes, number of records, and so on, but also on the data internal
properties, such as correlations and other statistical features that can only be known
at run time;

• Input data change rapidly. In many application domain data to be mined either are
produced with high rate or they actually come in streams. In those cases, knowledge
has to be mined fast and efficiently in order to be usable and updated.

• DM often supports decision-making process. In this case real-time constraints hold
and the request for rapid and efficient results is strong.

When it is not possible to control the performance of DM systems, the actual appli-
cability of DM techniques is compromised. Therefore, if we want to be able to apply
such techniques to real problems, involving huge amounts of data in a complex and het-
erogeneous hardware environment, it is necessary to develop efficient DM algorithms and
systems able to support them.

In this Thesis we will focus on the performance of DM algorithms, applications and
systems. We will study the efficiency and scalability of single DM kernel but also of more
complex DM applications.
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1.2 Review of thesis results

In this Thesis we focus on the performance of DM algorithms, applications and systems.
We face this problem at different levels. First we consider the algorithmic level (Chapter
2). Taking a common DM task, namely Frequent Set Counting (FSC), as a case study,
we perform an in depth analysis of performance issues in FSC algorithms. This led us
to devise a new algorithm for solving the FSC problem, that we called Direct Count and
Intersect (DCI).

One of the main features of the DCI algorithm is its adaptability to the dataset charac-
teristics in terms of its statistical properties. Starting from this result, we propose a more
general characterization of transactional datasets that allow to forecast, within a reason-
able range of confidence, some important properties in the FSC process, namely the dataset
density, the number of frequent itemsets present in a database and the representativeness
of a sample of the entire dataset.

Performance of DM systems is particularly important for those system that have strong
requirements in terms of response time. Web servers are a notable example of such systems:
they produce huge amounts of data at different levels (access log, structure, content). If
mined effectively and efficiently, the knowledge extracted from these data can be used for
service personalization, system improvement or site modification. We illustrate (Chapter
3) the application of DM techniques to the web domain and propose a DM system for
mining web access log data. The system is designed to be tightly coupled with the web
server and process the input stream of http requests in an on-line and incremental fashion.

Due to the intrinsically distributed nature of the data being mined and by the commonly
claimed need for high performance, parallel and distributed architectures often constitute
the natural platform for data mining applications (Chapter 4). We parallelized some DM
algorithms, most notably the DCI algorithm. We designed a multilevel parallel implemen-
tation of DCI, explicitly targeted at the execution on cluster of SMP nodes, that adopts
multi-threading for intra node and message passing for the inter node communications. To
face the problems of resource management, we also study the architecture of a scheduler
that maps DM applications onto large scale distributed environments, like Girds [28]. We
devised a strategy to predict the execution time of a generic DM algorithm and a schedul-
ing policy that effectively takes into account the cost of transferring data across distributed
sites.

The specific results obtained in studying single DM kernels or applications can be
generalized to wider classes of problems (Chapter 5) that allows the data miner to abstract
from the architectural details of the application (physical interaction with the data source,
base algorithm implementation) and concentrate only on the mining process. Following this
generic thinking, a Data Mining Template Library (DMTL) for frequent pattern mining was
designed at the Rensselaer Polytechnic Institute, Troy (NY) USA, under the supervision
of prof. M. J. Zaki. We joined the DMTL project during 2002 fall. We present the main
features of DMTL and a preliminary experimental evaluation.
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Chapter 2

Frequent Set Mining

Association Rule Mining (ARM) is one of the most popular DM task [3, 26, 31, 81], both
for the straight applicability of the knowledge extracted by this kind of analysis and for the
wide spectrum of application fields where it can be applied. For example a rule extracted
from an hypothetical tennis.db database, could be if weather is cloudy and temperature
above 25 degree then don’t play. A rule holds in a database with a confidence, which is a
percentage measure of how much the rule can be trusted, and a support , which is a measure
of how many records in the database confirm the rule.

The extraction of association rules from a database is typically composed by two phases.
First it is necessary to find the so called frequent patterns, i.e. patterns X that occur in a
significant number of records. Once such patterns are determined, the actual association
rules can be derived in the form of logical implications: X ⇒ Y which reads whenever X
occurs in a record, most likely also Y will occur.

The computationally intensive part of ARM is the determination of frequent patterns,
as confirmed by the considerable amount of efforts devoted to the design of algorithms for
this phase of the ARM process.

In this Chapter we review the most significant and recent algorithms for solving the
Frequent Pattern Counting problem and present DCI (Direct Count & Intersect), an novel
algorithm characterized by significant performance improvements over previous approaches
on a wide range of different conditions like input data, parameter values and testbed
architecture. In Chapter 4 we describe a parallel and distributed implementation of DCI.

2.1 Problem Statement

As stated above, Association Rule Mining regards the extractions of association rules from
a database of transactions, that we will call D. Each transaction in D is a variable length
collection of items from a set I. Depending on the actual nature of the database, items can
in principle be any kind of object. They can be ISBN codes identifying books in a bookstore,
or they can be attribute-value pairs in a relational database, or even more complex data
structures like trees or graphs [108]. Since most of the computational complexity of ARM
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16 CHAPTER 2. FREQUENT SET MINING

Symbol Description
D Transaction database
I Set of items appearing in D
k Length of an itemset, or algorithm step counter
m Size of I, i.e. number of distinct items in D
mk number of distinct items at step k
n Number of transactions
nk Number of transactions at step k
t A generic transaction
s Minimum support threshold

F, Fk Set of frequent itemsets, of length k
C, Ck Set of candidate itemsets, of length k

Table 2.1: Notation used in this Chapter

is independent from the particular type of data being mined, we consider for our analysis
items as integer identifiers.

A rule R has the form R : X ⇒ Y , where X and Y are sets of items (itemsets), such
that (X∩Y ) = ∅. A rule X ⇒ Y holds in D with a minimum confidence c and a minimum
support s, if at least the c% of all the transactions containing X also contains Y , and X∪Y
is present in at least the s% of all the transactions of the database. In order to extract
association rules from a database, it is necessary to find all the frequent itemsets in D,
i.e. all the set of items whose support overcomes a user defined minimum threshold. This
phase is called Frequent Set Counting (FSC).

We review in Table 2.1 the notation used throughout this and the following Chapters.

The database of transaction can be stored in a variety of formats, depending on the
nature of the data. It can be a relational database or a flat file, for example. In the rest
of this thesis we assume that D is actually a plain file, stored according to some coding
conventions but essentially is a plain list of variable length records, without any indexing
other than an identifier. We call this a dataset . Therefore, a typical dataset could be
the one reported on the left of Figure 2.1. This is the so called horizontal format, where
items are organized in transactions stored sequentially one after the other. On the right
of Figure 2.1 we report the so called vertical format, where with each item is stored the
list of the identifiers of the transactions where the item appears. A third option is to
store the dataset in bitmap format, i.e. the dataset is a matrix whose rows are items and
columns transaction identifiers. An element in the bitmap is set to 1 if that item appear
in the corresponding transaction. We will show later how our algorithm exploits benefits
of multiple formats.

The datasets we actually used in our analysis come from a publicly accessible repository
of real data, namely the UCI KDD Archive1. We also used some synthetic dataset that

1http://kdd.ics.uci.edu
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Figure 2.1: A typical transaction dataset in horizontal (left), bitmap (center) and vertical
(right) format.

Dataset n m tmin tave tmax σt size (MB) notes
connect 67557 129 43 43 43 0 11 connect-4 moves
BMS View 1 59601 497 1 2 267 4.9 1 web clickstreams
chess 3196 75 37 37 37 0 1 chess moves
mushroom 8124 119 23 23 23 0 1 mushrooms features
pumsb 49046 2113 74 74 74 0 14 Census data
pumsb star 49046 2088 49 50 63 2.0 10 pumsb’s less frequent items
USCensus1990 2458285 396 68 68 68 0 665 US Census of 1990
trec 1692082 5267657 1 177 71472 455 1163 Web-TREC corpus
T10I8D400K 338531 1000 1 11 36 4.7 18 synthetic
T25I10D10K 9219 996 10 27 50 5.7 1 synthetic
T25I20D100K 100000 5137 9 28 50 5.7 12 synthetic
T30I16D400K 397487 964 4 29 75 10 50 synthetic

Table 2.2: Characteristics of the datasets used in the analysis. For each dataset we show
the number of transactions n, the number of different items m, the minimum, average
and maximum transaction length tmin, tave, tmax, the standard deviation of the transaction
length distribution σt and the dataset size in MB.

mimic sales data, using the generator developed at IBM2. Additionally, we extracted a real-
world dataset from the TREC WT10g corpus [11]. The original corpus contained about
1.69 millions of WEB documents. The dataset for our tests was built by considering the
set of all the terms contained in each document as a transaction. Before generating the
transactional dataset, the collection of documents was filtered by removing HTML tags
and the most common words (stopwords), and by applying a stemming algorithm. The
resulting trec dataset is huge. It is about 1.1GB, and contains 1.69 millions of short and
long transactions, where the maximum length of a transaction is 71, 473 items.

We review in Table 2.2 the main features of the datasets used.

2http://www.almaden.ibm.com/software/quest/Resources/datasets/syndata.html
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2.2 FSC Algorithms

Despite the considerable amount of algorithms proposed in the last decade for solving
the problem of finding frequent patterns in transactional databases (among the many we
mention [4] [72] [43] [76] [105] [17] [14] [57]), a single best approach still has to be found.

The complexity of the FSC problem relies mainly in the potentially explosive growth of
its full search space, whose dimension g is, in the worst case, g =

∑|tmax|
k=1

(
m
k

)
, where tmax

is the maximum transaction length. If tmax = m, than the search space is the full power
set of I, i.e. P(I), whose dimension is exponential in m, i.e. g = 2m.

[Apriori]. Taking into account the minimum support threshold, it is possible to reduce
the search space, using the downward closure relation, which states that an itemset can only
be frequent if all its subsets are frequent as well. The exploitation of this property, origi-
nally introduced in the Apriori algorithm [4], has transformed a potentially exponentially
complex problem, into a more tractable one.

Following an iterative level-wise approach, at each iteration k, Apriori generates Ck, a
set of candidate k-itemsets, and counts the occurrences of these candidates in the trans-
actions. The candidates in Ck for which the minimum support constraint holds are then
inserted into Fk, i.e. the set of frequent k-itemsets, and the next iteration is started.

The key concept in the Apriori algorithm is the notion of candidate itemset. For ex-
ample consider a database whose transactions contain the items {{1}, {2}, {3}, {4}}. If we
found for some minimum support threshold that 3 is not frequent, i.e. F1 = {{1}, {2}, {4}},
then, when considering itemsets of length k = 2 we do not need to check any 2-itemset
containing the item 3. Due to the downward closure property, since 3 is not frequent, none
of its supersets will be frequent either. So, in this case, the set of candidate itemsets of
length 2 would be C2 = {{1, 2}, {1, 4}, {2, 4}}.

Several variations to the original Apriori algorithm, as well as many parallel imple-
mentations, have been proposed. We can recognize two main methods for determining
itemset supports: a counting-based approach [4, 40, 72, 14], and an intersection-based
approach [23, 103]. The former one, also adopted in Apriori , exploits a horizontal repre-
sentation of the dataset (left of Figure 2.1), and counts how many times each candidate
k-itemset occurs in every transaction. If the number of candidates does not explode, this
approach permits us to use a limited amount of main memory, since only Ck, along with
data structures used to quickly access the candidates (e.g. hash-trees or prefix-trees), are
required to be kept in-core. The latter method, on the other hand, exploits a vertical
dataset representation (right of Figure 2.1), where a tidlist, i.e. a list of transaction iden-
tifiers (tids), is associated with each itemset, and supports are determined through tidlist
intersections. The support of a k-itemset c can thus be computed either by a k-way inter-
section, i.e. by intersecting the k tidlists associated with the k items included in c, or by a
2-way intersection, i.e. by intersecting the tidlists associated with a pair of frequent (k−1)-
itemsets whose union is equal to c. While 2-way methods involve less intersections than
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k-way ones, they require much more memory to buffer all the intersections corresponding
to (the previously computed) frequent (k − 1)-itemsets.

[Eclat]. Zaki’s Eclat algorithm [103] is based on a clever dataset partitioning method
that relies on a lattice-theoretic approach for decomposing the search space. Each sub-
problem obtained from this search space decomposition is concerned with finding all the
frequent itemsets that share a common prefix. On the basis of a given common prefix it
is possible to determine a partition of the dataset, which will be composed of only those
transactions which constitute the support of the prefix. By recursively applying the Eclat’s
search space decomposition we can thus obtain subproblems which can entirely fit in main
memory. Recently Zaki proposed an enhancement to Eclat (dEclat) [105], whose main
innovation regards a novel vertical data representation called Diffset, which only keeps
track of differences in the tids of a candidate pattern from its generating frequent patterns.
Diffsets not only cut down the size of the memory required to store intermediate results,
but also increases the performance significantly.

[FP-growth]. Not all FSC algorithms rely on candidate generation [2, 43, 76, 57]. FP-
growth [43] builds in memory a compact representation of the dataset, where repeated
patterns are represented only once along with the associated repetition counters. The data
structure used to store the dataset is called frequent pattern tree, or FP-tree for short.
The algorithm recursively identifies tree paths which share a common prefix, and projects
the tree accordingly, thus reducing its size. These paths are intersected by considering
the associated counters. FP-growth works very well for so called dense (see Section 2.5)
datasets, for which it is able to construct very compressed FP-trees. Note that dense
datasets are exactly those for which an explosion in the number of candidates is usually
observed. In this case FP-growth is more effective than Apriori -like algorithms, which need
to generate and store in main memory a huge number of candidates for subset-counting.
Unfortunately, FP-growth does not perform well on sparse datasets [109], and this is also
confirmed by our tests reported in Section 2.4.6.

[OP]. Recently OP (Opportunistic Projection), another projection-based algorithm, has
been proposed [57]. OP overcomes the limits of FP-growth, using a tree-based representa-
tion (similar to FP-growth) of projected transactions for dense datasets, and a new array-
based representation of the same transactions for sparse datasets. Moreover the authors of
OP have proposed a heuristic to opportunely switch between a depth-first and a breadth-
first visit of the frequent set tree. The choice of using a breadth-first visit depends on the
size of the dataset to mine. For large datasets, the frequent set tree is grown breadth-first,
but, when the size of the dataset becomes small enough, the growth of the tree is completed
by using a more efficient depth-first approach.
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2.3 Open Problems

As demonstrated by direct experiments, no algorithm proposed so far outperforms the
others in all cases, i.e. on all possible dataset and for all possible interesting values of s.
Indeed, a critical source of complexity in the FSC problem resides in the dataset internal
correlation and statistical properties, which remain unknown until the mining is completed.
Such diversity in the dataset properties is reflected in measurable quantities, like the total
number of transactions, or the total number of distinct items m appearing in the database,
but also in some other more fuzzy properties which, although commonly recognized as
important, still lacks a formal and univocal definition. It is the case, for example, of the
notion of how dense a dataset is, i.e. how much its transactions tend to resemble among
one another.

Several important results have been achieved for specific cases. Dense datasets are
effectively mined with compressed data structure [105], explosion in the candidates can be
avoided using effective projections of the dataset [57], the support of itemsets in compact
datasets can be inferred, without counting, using an equivalence class based partition of
the dataset [14].

In order to take advantage of all these, and more specific results, hybrid approaches
have been proposed [33]. Critical to this point is when and how to adopt a given solution
instead of another. In lack of a complete theoretical understanding of the FSC problem, the
only solution is to adopt an heuristic approach, where theoretical reasoning is supported by
direct experience. Therefore, a desirable feature of a new algorithm should be the ability
to adapt its behavior to these characteristics and preserve good performances on a wide
range of input datasets.

Another important aspect that has strong influence on performance is related to the
features of the hardware platform where the algorithm is executed. Modern hw/sw sys-
tems need high locality for effectively exploiting memory hierarchies and achieving high
performances. Large dynamic data structures with pointers may lack in locality due to
unstructured memory references. Other sources of performance limitations may be un-
predictable branch instructions. It is important to be able to take advantage of modern
operating system optimizations by using simple array data structures, accessed by tight
loops which exhibit high spatial and temporal locality.

Much emphasis has been posed in the past in the global reduction of I/O activity in
DM algorithms. On the other hand, real datasets are assumed to easily overcome the
memory available on any machine. We therefore consider important to adopt an out-of-
core approach as a starting point of DM algorithms that will enable us to handle such
huge datasets. I/O operations, therefore must be carefully optimized, for example with
regular access patterns that allow to achieve high spatial locality and take advantage of
prefetching and caching features of modern OSs [12].

When the dataset largely overcomes the physical memory available or poses really strong
computational problems, then it is necessary to take advantage of the aggregate resources of
parallel and distributed architectures. Efficient parallel implementations of FSC algorithms
are therefore necessary in order to be able to efficiently mine huge amounts of data.
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2.4 Adaptive Frequent Set Mining: the DCI algorithm

We introduce here the DCI algorithm and illustrate how with its design we face the issues
sketched above. Its pseudo-code is reported in Algorithm 1. As Apriori , at each iteration
DCI builds the set Fk of the frequent k-itemsets on the basis of the set of candidates Ck.
However, DCI adopts a hybrid approach to determine the support of the candidates. During
the first iterations, it exploits a counting–based technique, and dataset pruning (line 7), i.e.
items which will not appear in longer patterns are removed from the dataset. The pruning
technique is illustrated in more detail in Section 2.4.3. As soon as the pruned dataset
fits into the main memory, DCI starts using an optimized intersection–based technique to
access the in-core dataset (line 14 and 16).

Input: D, s
1: F1 = first scan(D, s,&D2); // find frequent items and remove non-frequents from D
2: F2 = second scan(D2, s, &D3); // find frequent pairs from pruned dataset
3: k = 2;
4: // until pruned dataset is bigger than memory...
5: while (Dk+1.size() > memory available()) do
6: k + +;
7: Fk = horizontal iter(Dk, s, k,&Dk+1); //... keep the horizontal format
8: end while
9: // switch to vertical format

10: dense = Dk+1.is dense(); // measure dataset density
11: while (Fk 6= ∅) do
12: k + +;
13: if (dense) then
14: Fk = vertical iter dense(Dk, s, k); // dense dataset optimization
15: else
16: Fk = vertical iter sparse(Dk, s, k,&Dk+1); // sparse dataset optimization
17: end if
18: end while

Algorithm 1: Direct Count and Intersect - DCI

As previously stated, DCI adapts its behavior to the features of the specific computing
platform and to the features of the dataset mined. DCI deals with dataset peculiarities
by dynamically choosing between distinct optimization heuristics according to the dataset
density (line 13).

During its initial counting-based phase, DCI exploits an out-of-core, horizontal database
with variable length records. By exploiting effective pruning techniques inspired by the
DHP algorithm [72], DCI trims the transaction database as execution progresses. Dataset
pruning entails a reduction in I/O activity as the algorithm progresses, but the main
benefits come from the lower computational cost of subset counting due to the reduced
number and size of transactions. A pruned dataset Dk+1 is thus written to disk at each
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iteration k, and employed at the next iteration. Let mk be the number of distinct items
included in the pruned dataset Dk, and nk the number of remaining transactions. Due
to dataset pruning mk+1 ≤ mk and nk+1 ≤ nk always hold. As soon as the pruned
dataset becomes small enough to fit into the main memory, DCI adaptively changes its
behavior, builds a vertical layout database in-core, and starts adopting an intersection-
based approach to determine frequent sets. Note, however, that DCI continues to have a
level-wise behavior.

At each iteration, DCI generates the candidate set Ck by finding all the pairs of (k−1)-
itemsets that are included in Fk−1 and share a common (k − 2)-prefix. Since Fk−1 is
lexicographically ordered, pairs occur in close positions, and candidate generation is per-
formed with high spatial and temporal locality. Only during the DCI counting-phase, Ck

is further pruned by checking whether all the other subsets of a candidate are included
in Fk−1. Conversely, during the intersection-based phase, since our intersection method
is able to quickly determine the support of a candidate itemset, we found much more
profitable to avoid this further check. As a consequence, while during its counting-based
phase DCI has to maintain Ck in main memory to search candidates and increment their
associated counters, this is no longer needed during the intersection-based phase. As soon
as a candidate k-itemset is generated, DCI determines its support on-the-fly by intersect-
ing the corresponding tidlists. This is an important improvement over other Apriori -like
algorithms, which suffer from the possible huge memory requirements due to the explosion
of the size of Ck [43].

DCI makes use of a large body of out-of-core techniques, so that it is able to adapt
its behavior also to machines with limited main memory. Datasets are read/written in
blocks, to take advantage of I/O prefetching and system pipelining [12]. The outputs of
the algorithm, e.g. the frequent sets Fk, are written to files that are mmap-ped into memory
during the next iteration for candidate generation.

In the following we illustrate all the different optimizations and strategies adopted and
the corresponding heuristics used to chose among them.

2.4.1 Dynamic type selection

The first optimization is concerned with the amount of memory used to represent itemsets
and their counters. Since such structures are extensively accessed during the execution of
the algorithm, is it profitable to have such data occupying as little memory as possible.
This not only allows to reduce the spatial complexity of the algorithm, but also permits
low level processor optimizations to be effective at run time.

During the first scan of the dataset, global properties are collected like the total number
of distinct frequent items (m1) or the maximum transaction size and the support of the
most frequent item.

Once this information is available, we remap items to ordered and contiguous integer
identifiers. This allows us to decide the best data type to represent such identifiers and
their counters. For example if the maximum support with which an item is present is less
than 65536, we can use an unsigned short int to represent them. The same holds for
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Figure 2.2: Compressed data structure used for itemset collection can reduce the amount
of memory needed to store the itemsets.

the remapped identifiers of the items.

The decision of which is the most appropriate type to use for items and counters is
taken at run time, by means of a C++ template-based implementation of DCI.

2.4.2 Compressed data structures

Itemsets are often organized in collections in many FSC algorithms. Efficient representation
of such collections can lead to important performance improvements. In DCI we introduce
a compressed representation of an itemset collection, in order to take advantage of prefix
sharing among itemsets in the collection, whenever it occurs.

The compressed data structure is based on three arrays (Figure 2.2). At each iteration
k, the first array (prefix) stores the different prefixes of length k − 1. In the third array
(suffix) all the length-1 suffixes are stored. Finally, in the element i of the second array
(index), we store the position in the suffix array of the section of suffixes that share the
same prefix. Therefore, when the itemsets in the collection have to be enumerated, we first
access the prefix array. Then, from the corresponding entry in the index array we get
the section of suffixes stored in suffix, needed to complete the itemsets.

We evaluated the actual reduction in the memory used for two real datasets and re-
ported the results in Figure 2.3.

It is worth noticing that also for the BMS View 1 dataset, which is known to be sparse,
the reduction introduced by the compressed data structures is relevant for most of the
iterations.

2.4.3 The counting-based phase

The techniques used in the counting-based phase of DCI are detailed in [67], where we pro-
posed an effective algorithm for mining short patterns. Since the counting-based approach
is used only for few iterations, in the following we only sketch the main features of the
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Figure 2.3: Memory usage with compressed itemsets collection representation for
BMS View 1 with s = 0.06% (a) and connect with s = 80% (b)

counting method adopted.

In the first iteration, similarly to all FSC algorithms, DCI exploits a vector of counters.
For k ≥ 2, instead of using complex data structures like hash-trees or prefix-trees, DCI uses
a novel Direct Count technique that can be thought of as a generalization of the technique
used for k = 1. The technique uses a prefix table, PREFIXk[ ], of size

(
mk

2

)
. Each entry

of PREFIXk[ ] is associated with a distinct ordered prefix of two items. To permit direct
access to the different entries of PREFIXk[ ], we used an order preserving, minimal perfect
hash function. For k = 2, PREFIXk[ ] contains the counters associated with candidate
2-itemsets, while, for k > 2, each entry of PREFIXk[ ] stores the pointer to the contiguous
sections of ordered candidates in Ck sharing the same prefix. In this case the table is used to
count the support of candidates in Ck as follows. For each transaction t = {t1, . . . , t|t|}, we
select all the possible 2-prefixes of all k-subsets included in t. We then exploit PREFIXk[ ]
to find the sections of Ck which must be visited in order to check set-inclusion of candidates
in transaction t.

We designed the out-of-core counting-based phase of DCI having in mind scalability
issues. As mentioned above, the dataset is read in blocks, and a pruned dataset Dk+1 is
written to disk at each iteration k. Two different pruning techniques are exploited [67].
The first transforms a generic transaction t, read from Dk, into a pruned transaction t̂,
which will contain only the items of t that appear in at least k − 1 frequent itemsets of
Fk−1. The second technique further prunes t̂ during subset counting, and produces the
final transaction ẗ which will be written to Dk+1. In this case, an item of t̂ will be retained
in ẗ only if it appears in at least k candidate itemsets of Ck.

Since the counting-based approach becomes less efficient as k increases [84], another
important benefit of dataset pruning is that it allows to rapidly reduce dataset size, so that
the DCI in-core intersection-based phase can be started early also when huge datasets are
mined, or machines with limited memory are used.
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2.4.4 The intersection-based phase

DCI starts its intersection-based phase as soon as the vertical representation of the pruned
dataset can be stored in core. Hence, at each iteration k, k ≥ 2, DCI checks memory
requirements for the vertical dataset. When the dataset becomes small enough for the
computing platform used, the vertical in-core dataset is built on the fly, while the transac-
tions are read and counted against Ck. The intersection-based method thus starts at the
following iteration.

The vertical layout of the dataset is based on fixed length records (tidlists), stored
as bit-vectors (see Figure 2.9, center). The whole vertical dataset can thus be seen as
a bidimensional bit-array whose rows correspond to the bit-vectors associated with non
pruned items. Therefore, the amount of memory required to store the vertical dataset is
mk × nk bits.

At each iteration of its intersection-based phase, DCI computes Fk as follows. For each
candidate k-itemset c, we and-intersect the bit-vectors associated with the k items of c
(k-way intersection), and count the 1’s present in the resulting bit-vector. If this number
is greater or equal to s, we insert c into Fk. Consider that a bit-vector intersection can be
carried out very efficiently and with high spatial locality by using primitive bitwise and
instructions with word operands. As previously stated, this method does not require Ck

to be kept in memory: we can compute the support of each candidate c on-the-fly, as soon
as it is generated.

The strategy illustrated above is, in principle, highly inefficient, because it always needs
a k-way intersection to determine the support of each candidate c. Nevertheless, a caching
policy could be exploited in order to save work and speed up our k-way intersection method.
To this end, DCI uses a small cache buffer to store all the k − 2 intermediate intersections
that have been computed for evaluating the last candidate. Since candidate itemsets are
generated in lexicographic order, with high probability two consecutive candidates, e.g. c
and c′, share a common prefix. Suppose that c and c′ share a prefix of length h ≥ 2. When
we process c′, we can avoid performing the first h − 1 intersections since their result can
be found in the cache.

To evaluate the effectiveness of our caching policy, we counted the actual number of
intersections carried out by DCI on two different datasets: BMS View 1, and connect. We
compared this number with the best and the worst case. The best case corresponds to the
adoption of a 2-way intersection approach, which is only possible if we can fully cache the
tidlists associated with all the frequent (k−1)-itemsets in Fk−1. The worst case regards the
adoption of a pure k-way intersection method, i.e. a method that does not exploit caching
at all. Figure 2.4.(a) plots the results of this analysis on the sparse dataset for support
threshold s = 0.06%, while Figure 2.4.(b) regards the dense dataset mined with support
threshold s = 80%. In both the cases the caching policy of DCI turns out to be very
effective since the actual number of intersections performed is very close to the best case.
Moreover, DCI requires orders of magnitude less memory than a pure 2-way intersection
approach, thus better exploiting memory hierarchies.

We have to consider that while caching reduces the number of tidlist intersections, we
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Figure 2.4: Per iteration number of tidlist intersections performed on datasets BMS View 1
and connect for DCI, and the pure 2-way and k-way intersection-based approaches.

also need to reduce intersection cost. To this end, further heuristics, differentiated w.r.t.
sparse or dense datasets, are adopted by DCI. In order to apply the right optimization, the
vertical dataset is tested for checking its density as soon as it is built.

In particular, we compare the bit-vectors associated with the most frequent items, i.e.,
the vectors which are likely to be intersected several times since the associated items occur
in many candidates. If large sections of these bit-vectors turn out to be identical, we
deduce that the items are highly correlated and that the dataset is dense. In this case
we adopt a specific heuristic which exploits similarities between these vectors. Otherwise
the technique for sparse datasets is adopted. In the following we illustrate the heuristic in
more detail.

2.4.5 Dense vs. Sparse optimization

We adopt two different strategies according to whether a dataset is recognized as dense or
not. In Section 2.5 describe in more detail the heuristic used to determine a dataset density.
Here we illustrate the different strategies adopted once the dataset density is determined:

• Sparse datasets. Sparse datasets originate bit-vectors containing long runs of 0’s.
To speedup computation, while we compute the intersection of the bit-vectors relative
to the first two items c1 and c2 of a generic candidate itemset c = {c1, c2, . . . , ck} ∈ Ck,
we also identify and maintain information about the runs of 0’s appearing in the
resulting bit-vector stored in cache. The further intersections that are needed to de-
termine the support of c (as well as intersections needed to process other candidates
sharing the same 2-item prefix) will skip these runs of 0’s, so that only vector seg-
ments which may contain 1’s are actually intersected. Since information about the
runs of 0’s is computed once, and the same information is reused many times, this
optimization results to be very effective. Note that such technique is a fast approxi-
mation of a dataset projection, since the vertical dataset is dynamically reduced by
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removing transactions (i.e., blocks of columns) that do not support a given 2-item
prefix, and thus cannot support larger itemsets sharing the same prefix.

Moreover, sparse datasets offer the possibility of further pruning vertical datasets as
computation progresses. The benefits of pruning regard the reduction in the length
of the bit-vectors and thus in the cost of intersections. Note that a transaction, i.e. a
column of the vertical dataset, can be removed from the vertical dataset when it does
not contain any of the itemsets included in Fk. This check can simply be done by or-
ing the intersection bit-vectors computed for all the frequent k-itemsets. However, we
observed that dataset pruning is expensive, since vectors must be compacted at the
level of single bits. Hence DCI prunes the dataset only if turns out to be profitable,
i.e. if we can obtain a large reduction in the vector length, and the number of vectors
to be compacted is small with respect to the cardinality of Ck.

• Dense datasets. If the dataset is dense, we expect to deal with strong correlations
among the most frequent items. This not only means that the bit-vectors associated
with the most frequent items contain long runs of 1’s, but also that they turn out
to be very similar. The heuristic technique adopted by DCI for dense dataset thus
works as follows:

– reorder the columns of the vertical dataset, in order to move identical segments
of the bit-vectors associated with the most frequent items to the first consecutive
positions;

– since each candidate is likely to include several of the most frequent items, we
avoid repeated intersections of identical segments. This technique may save
a lot of work because (i) the intersection of identical vector segments is done
once, (ii) the identical segments are usually very large, and (iii), long candidate
itemsets presumably contains several of these most frequent items.

The plots reported in Figure 2.5 show the effectiveness of the heuristic optimizations
discussed above in reducing the average number of bitwise and operations needed to inter-
sect a pair of bit-vectors. In particular, in Figure 2.5.(a) the sparse BMS View 1 dataset is
mined with support threshold s = 0.06%, while in Figure 2.5.(b) the dense dataset connect
is mined with support threshold s = 80%. In both cases, we plotted the per-iteration cost
of each bit-vector intersection in terms of bitwise and operations when either our heuristic
optimizations are adopted or not. The two plots show that our optimizations for both
sparse and dense datasets have the effect of reducing the intersection cost up to an order
of magnitude. Note that when no optimizations are employed, the curves exactly plot the
bit-vector length (in words). Finally, from the plot reported in Figure 2.5.(a), we can also
note the effect of the pruning technique used on sparse datasets. Pruning has the effect of
reducing the length of the bit-vectors as execution progresses. On the other hand, when
datasets are dense, the vertical dataset is not pruned, so that the length of bit-vectors
remains the same for all the intersection-based iterations.
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Figure 2.5: Average number of bitwise and operations actually performed to intersect two
bit-vectors as a function of k.

2.4.6 Experimental Results

For the sequential tests we used a MS-Windows2000 workstation equipped with an AMD
Athlon XP 2400 processor, 1GB of RAM memory and an eide hard disk.

The performance of DCI were compared with those achieved under the same testing
conditions by three of the most efficient FSC algorithms proposed in literature. In partic-
ular, we used FP-growth, OP, and dEclat, in the original implementation by the respective
authors3.

Figure 2.6 reports the total execution times obtained running FP-growth, dEclat, OP,
and DCI on various datasets as a function of the support threshold s.

We can see that DCI performances are very similar to those obtained by OP. In some
cases DCI slightly outperforms OP, in other cases the opposite holds. In all the tests
conducted, DCI instead outperforms both dEclat and FP-growth. Finally, due to its adap-
tiveness, DCI can effectively mine huge datasets like USCensus1990 and TREC, on which
all the other algorithms fail also using very large support thresholds (Figure 2.7).

To validate DCI design choices, we evaluated its scale-up behavior when varying both
the size of the dataset and the size of available memory. The dataset employed for these
tests was synthetically generated (T20I8M1K) with variable number of transactions. The
support threshold was set to s = 0.5%, while the available RAM in a Pentium II 350MHz
PC was changed from 64MB to 512MB by physically plugging additional memory banks
into the PC main board. Figure 2.8.(a) and 2.8.(b) plot several curves representing the
execution times of DCI and FP-growth, respectively, as a function of the number of trans-
actions contained in the dataset processed. Each curve plotted refers to a series of tests
conducted with the same PC equipped with a different amount of memory. As it can
be seen from Figure 2.8.(a), DCI scales linearly also on machines with less memory. Due
to its adaptiveness and the use of efficient out-of-core techniques, it is able to modify its

3We acknowledge J. Han, M. J. Zaki and J. Liu for kindly providing us the latest version of their codes.
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Figure 2.6: Total execution times of OP, FP-growth, dEclat, and DCI on various datasets
as a function of the support threshold.

behavior in function of the features of the dataset mined and the computational resources
available. For example, in the tests conducted with two millions of transactions, the in-
core intersection-based phase was started at the sixth iteration when only 64MB of RAM
were available, and at the third iteration when the available memory was 512MB. On the
other hand the results reported in Figure 2.8.(b) show that FP-growth requires much more
memory than DCI, and is not able to adapt itself to memory availability. For example, in
the tests conducted with 64MB of RAM, FP-growth requires less than 30 seconds to mine
the dataset with 200K transactions, but when we double the size of the dataset to 400K
transactions, FP-growth execution time becomes 1303 seconds, more than 40 times higher,
due to a heavy page swapping activity.

2.5 Characterization of dataset properties

As already stated in this Chapter, one important property of transactional datasets, is their
density. The notion of density, although not yet formally defined in the literature, plays a
crucial role in determining the best strategy for solving the FSC problem. A dataset is said
to be dense, when most transactions tend to be similar among them: they have about the
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Figure 2.7: Total execution times of OP, FP-growth, dEclat, and DCI on various datasets
as a function of the support threshold.

same length and contain mostly the same items. When dealing with such datasets, several
optimizations can be very effective, like using compressed data structures both for the
dataset and for itemsets representation. Conversely, for sparse datasets where transactions
differ a lot one from another, in general it might be useful to apply some pruning technique
in order to get rid of useless items and transactions. We showed in Section 2.4.5 the details
of such optimizations.

Another important issue is to determine the range of support threshold within which
a relevant number of frequent itemsets will be found. When nothing is known about the
dataset, the only option is to start mining with a high support value and then decrease
the threshold until we find a number of frequent itemsets that fulfill our requirements. It
would be nice if we could have an idea of the dataset behavior for all possible supports,
before starting the actual - potentially expensive - computation.

In a recent work [32] Goethals et al. have analytically found a tight upper bound for the
number of candidates that can be generated during the steps of a level-wise algorithm for
FSC. From the knowledge of the number of frequent patterns found at step k, it is possible
to know an upper bound for the candidates that will be generated at step k + 1. This
permits to estimate with a good level of accuracy the maximal pattern length, i.e. how
many steps will be performed by the algorithm. Such knowledge is used by the authors
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Figure 2.8: Total execution times of (a) DCI, and (b) FP-growth, on dataset T20I8M1K
with variable number of transactions mined with a support threshold s = 0.5% on a PC
equipped with different RAM sizes as a function of the number of transactions (ranging
from 100K to 2M).

to postpone the actual counting of candidates as much as possible, thereby limiting the
number of database scans, without the risk of a combinatorial explosion in the number of
candidates.

Rather than focusing on the characteristics of level-wise FSC algorithms, namely can-
didate generation, the problem we want to address in this Section is that of finding a
good characterization of a dataset complexity, in terms of the number of patterns satisfy-
ing a given support threshold, and of its density, in order to apply adequate optimization
strategies.

In [82], Zaki et al. study the length distribution of frequent and maximal frequent
itemsets for synthetic and real datasets. This characterization allows them to devise a pro-
cedure for the generation of benchmarking datasets that reproduce the length distribution
of frequent patterns.

To the best of our knowledge, no previous work has been addressed at a characterization
of a dataset density and at how this characterization can be used for optimization purposes.

We will try to answer the questions of whether a dataset is dense or sparse and which
is the support range of potential interest for a given dataset [68].

2.5.1 Definitions

We define here the notion of dataset density, i.e. of how much the transactions inside the
dataset resemble one with another. Intuitively, the more dense a dataset is, the more its
transactions will differ only for very few items.

The following two limit cases give an idea of the intuitive meaning of density. The max-
imum density that a dataset can have corresponds to all the transactions being identical.
On the other hand, minimum density corresponds to each transaction containing only one
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single item and each item appearing in only one transaction. In Figure 2.9 we represent
the dataset in binary format, where to each of the n transactions we associate a row in a
matrix whose elements are 0 or 1 according to whether the corresponding item - ranging
from 1 to m - is present or not in the transaction. We see that maximum density - Fig.
2.9 (a) - corresponds to a matrix whose elements are all 1, and minimum density - Fig. 2.9
(b) - to the identity matrix, with ones only along the main diagonal. In the following we
will respectively refer to these two extreme datasets as D (for dense) and S (for sparse).

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Figure 2.9: Limit cases of maximum (a) and minimum (b) density for transactional datasets
in binary format.

Real datasets of course in general exhibits an intermediate behavior with respect to the
limit cases. In Figure 2.10 we plotted the bitmap representation4 of some real datasets and
a synthetic one.

From this simple representation it is already possible to isolate some qualitative fea-
ture of a dataset. It is for example evident that BMS View 1 and the synthetic dataset
(Figure 2.10 (d) and (e) respectively) are more sparse than the others. Nevertheless, while
the synthetic dataset shows a regular structure, with an almost uniform distribution of
ones in the bitmap, BMS View 1 exhibits a more complicated internal structure, with few
extremely long transactions and a few items appearing in almost all transactions (almost
full rows and columns respectively).

2.5.2 Heuristics

We would like to be able to characterize datasets with a measurable quantity from which
it is possible to tell how dense a dataset is, i.e. if it is closer to D or to S.

The simplest choice we can make, is to consider the fraction of 1’s in the dataset
matrix, which is 1 for D and 1/m for S. Such definition is not sufficient to capture all the
interesting dataset features from the point of view of FSC, since two transactions with the

4The bitmap is obtained by evaluating the number of occurrences of each distinct item in a subset of
n/m transactions and assigning a level of gray proportional to such count.
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(a) (b) (c)

(d) (e)

Figure 2.10: Bitmap representation of datasets: (a) connect; (b) chess; (c) mushroom; (d)
BMS View 1; (e) T25I10D10K. All images have been rescaled to the same squared size.

same number of items will bring the same contribution to the overall density, regardless of
how they actually resemble one another.

A more interesting behavior is exhibited by the average support of frequent items,
plotted in Figure 2.11.

For almost all values of the support threshold - along the x axis - dense datasets maintain
an average support of frequent items that is sharply higher than the threshold, i.e. curves
corresponding to dense datasets reside well above the y = x line. On the other hand, for
sparse dataset only a few items have support high enough to pass the threshold filter, even
for low values of the threshold. We can use this qualitative analysis two define two classes
of datasets. Dense datasets are characterized by an average support for frequent items that
is much higher than the minimum support threshold for almost all supports. How much
higher is a question that remains unsolved at this level of analysis.

Although we can qualitatively classify a dataset into sparse/dense categories using the
average support of frequent items, we still have the same problem stated above: transaction
similarity is not taken into account and therefore we have little or no chance at all to have
any hints on the frequent patterns contained in the dataset.

We can have a more accurate measure of transaction similarity by measuring the cor-
relation among the tidlists corresponding to the most frequent itemsets. This is actually
the heuristic adopted in the DCI algorithm for determining whether a dataset is dense or
not. In the following, we give a description of such heuristic.

We basic idea is to measure the area in the bitmap vertical representation of the dataset
where tidlists are almost the same. If such area exists and is wide enough, then the dataset
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is dense.

As an example, consider the two dataset in Figure 2.12, where tidlists are placed hor-
izontally, i.e. rows correspond to items and columns to transactions. Suppose to choose
a density threshold δ = 0.4. If we order the items according to their support, we have
the most frequent items, i.e. those who are more likely to appear in long itemsets, at the
bottom of each figure. Starting from the bottom, we find the maximum number of items
whose tidlists have a significant common section. In the case of dataset (a), for example,
a fraction f = 1/2 of the items share p = 90% of the transactions, i.e. 90% of the times
they appear, they are together. So we have d = fp = 0.5× 0.9 = 0.45 which is above the
density threshold. For dataset (b) on the other hand, a smaller section p = 50% is common
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Figure 2.12: Heuristic to establish a dataset density or sparsity
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to f = 1/3 of the items. In this last case the density d = fp = 0.3 × 0.5 = 0.15 is lower
than the threshold and the dataset is considered as sparse. It is worth to notice that since
this notion of density depends on the minimum support threshold, the same dataset can
exhibits different behaviors when mined with different support thresholds.

2.5.3 Dataset Entropy

To have a more accurate estimate of transaction similarity, we should measure the amount
of information contained in each transaction. The information relevant to the FSC problem
is the collection of itemsets contained in a transaction. Our idea is to consider the dataset
as a transaction source and measure the entropy of the signal - i.e. the transactions -
produced by such source.

For a given length k, we define the following quantity:

Hk(s) = −
(m

k)∑
i=1

[[pi > s]] pi log pi (2.1)

where pi is the probability of observing itemset i, of length k, in the dataset and the
truth function [[expr]] which equals 1 if expr is TRUE and 0 otherwise, is used to select
only the frequent itemsets.

The probabilities pi are the normalized frequencies:

pi =
fi∑
j fj

(2.2)

with fi being equal to the number of transaction where the itemset appears, divided
by the number n of transactions in the dataset.

The intuitive idea behind Equation 2.1 is that of considering the dataset as source
emitting a signal, i.e. transactions. The information contained in such source are the
itemsets. By selecting only frequent itemsets, we consider the minimum support threshold
influence on the problem complexity: the lower the minimum support, the harder the
mining process.

Definition 2.1 holds for any itemset length k. Measuring Hk(s) for all possible k corre-
sponds to running an FSC algorithm. We therefore ask if it is possible to capture useful
information on the dataset properties only considering small values for k.

We begin considering H1, i.e. the entropy of single items, which is the simplest Hk to
be evaluated. We consider the two limit cases S and D with no minimum support filter
applied. In the first dataset fi = 1/m,∀i so pi = 1/m,∀i and H1(S) = log(m). For the
dense dataset, fi = 1,∀i so pi = 1/m∀i and again H1(D) = log(m). Therefore using
H1 we are not able to distinguish between the two limit cases which are interesting for
our purposes. This is due to the fact that with H1 we cannot differentiate between the
contribution of a transaction of, say, nt items and nt transactions each one with only one
of the items of the first transaction. For example a dataset composed by one transaction
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D = {{1, 2, 3}} and a dataset composed by three transactions D′ = {{1}, {2}, {3}} would
have the same H1.

The problem is that in H1 we are not considering any correlation among items, i.e. we
have no notion of transaction. The simplest level of correlation we can consider is that of
single items correlations. We therefore go one step further and consider k = 2:

H2(s) = −
m(m−1)/2∑

i=1

[[pi > s]] pi log pi (2.3)

Now for the sparse dataset S we have fi = pi = 0,∀i, since the itemsets we consider
are the m(m − 1)/2 pairs of m items. So H2(S) = 0. On the other hand, for D we have
fi = 1, pi = 2/(m(m− 1))∀i and H2(D) = log(m(m− 1)/2).

Using H2 it is possible to distinguish between D and S. Of course also H2 fails to
fully characterize a dataset. The following two datasets: D = {{1, 2, 3, 4}} and D′ =
{{1, 2}, {3, 4}} are again indistinguishable looking only at the pair occurrences, as in H2,
and H3 should be considered instead.

In Figure 2.13 we plotted the measured value of H2(s) for different supports and different
datasets.

It is possible to identify two different qualitative behaviors. A subset of all the datasets
considered, while increasing s, only a little variation in H2 is observed. For another subset
of the datasets considered this is not true. This second group exhibits a rapid decay of H
while increasing s.
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Figure 2.13: Entropy of known datasets. Sparse dataset are characterized by a rapidly
decreasing entropy, while dense datasets maintain an almost constant value for all supports.
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Dataset smin ∼ smax (%)
connect 45 ∼ 90
chess 15 ∼ 70
mushroom 1 ∼ 20
pumsb 60 ∼ 95
pumsb star 25 ∼ 60
T25I20D100K 0.55 ∼ 1
BMS View 1 0.06 ∼ 0.4

Table 2.3: Support range for each dataset in Figure 2.14. Ten support values were consid-
ered within each range.

It is important to notice that the variation of H2 is significant more than its absolute
value. In other words in order to compare the characteristics of two datasets, it is necessary
to evaluate H2(s) for several supports.

We conclude this section with an observation on the computational cost of such measure.
The evaluation of H1 only involves single items frequencies, therefore a single dataset scan
is required while the amount of memory is of O(m). To evaluate H2 it is necessary to know
the pair frequencies, which implies a further dataset scan or, if enough memory is available
- O(m2) - everything can be evaluated in the first scan.

2.5.4 Entropy and Frequent itemsets

One interesting feature of H is that it can be related with the total number of frequent
itemsets present in a dataset for a given support threshold.

When applying an FSC algorithm to an unknown dataset, one option is to start with
a very high support threshold and then keeps running the FSC algorithm while lowering
the threshold, until a satisfactory number of frequent patterns is found. This approach has
the strong limitation that we do not know in advance how long can the computation last,
even for high minimum supports, and, most importantly, it is not possible to determine
how many patterns the FSC algorithm will find for a given support until we run it.

Since H is related to the correlation among transactions, one could think that its
variation can be related to the variation in the number of patterns found. In fact, this
conjecture is confirmed by experimental verification.

We consider the total number of frequent itemsets found for different datasets and
supports, and measure the corresponding value of H2(s). For each dataset we considered
10 different support values in different ranges, reported in Table 2.3.

We found that the logarithm of the total number of frequent patterns is linearly corre-
lated with H2(s). In Fig. 2.14 (a) a linear fit obtained by a minimum square regression, is
superimposed to each data series.

Therefore, if we wanted to know how many frequent patterns are contained in a dataset
for a given support threshold, we could run the FSC algorithm with a few values of high
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Figure 2.14: Total number of frequent patterns found versus entropy and the error on
predicting the number of frequent itemsets produced

supports (corresponding to small execution times), and then extrapolate the unknown
number of frequent patterns for the requested support. Conversely, from the same linear
regression, we could determine which is the support that will produce a given number of
frequent patterns.

In Figure 2.14 (b) we evaluated the accuracy of the estimation obtained from the linear
regression. For each dataset, we performed a linear fit taking a variable number of points
from the curves in Fig. 2.14 (a), starting from the highest supports, i.e lowest values for
H(s). Then we plotted the χ2 of the fit, taking an increasing number of points in the fit.
The lower the value of χ, the better the quality of the fit.

From this results we can assert that it is possible to estimate the number of total
frequent itemsets present in a dataset for a given support, by extrapolating the values
obtained for high supports.

In Figure 2.15 we plot the average error on the estimate of the number of frequent
itemsets using an increasing number of points from the plot in Figure 2.14 (a).

For each dataset, we performed a linear fit taking a variable number of points from the
curves in Fig. 2.14 (a), starting from the highest supports, i.e lowest values for H(s). Then
we evaluated the average error obtained when estimating the number of frequent patterns
for the rest of the points in the plot. More precisely, if we have n different values of H(s)
(in our case n = 10), and the n corresponding values for the total number of frequent
patterns |F |, we perform the linear fit for j (j ≥ 3) of such (H, log(|F |)) pairs. From the
fit parameters we can estimate the values of the remaining n − j − 1 number of frequent
patterns |F |. The error of the estimate, as a function of j, is defined as:

error(j) =
1

n− j − 1

n−1∑
i=j+1

|F |i − |F |i
|F |i

· 100% (2.4)
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Figure 2.15: A measure of the error obtained on the estimate of the total number of
candidates

From Figure 2.15 we can see that for most datasets already for four points the errors
are lower than 40%, which permits to have a reasonable confidence when predicting the
total number of frequent itemsets. In particular, by running the FSC algorithm with four
values of s - that can be chosen in order to minimize the execution time - we are able
to predict the total number of frequent patterns found for any value of s, within a 40%
confidence.

2.5.5 Entropy and sampling

A common problem that arises in datamining when dealing with huge amount of data is
that of obtaining an approximate result by applying an algorithm on a sample of the input
dataset. In this case it is of interest to determine how accurate is the knowledge extracted
from the sample. Several sampling algorithms have been proposed with variable level of
accuracy [21] [107], yet the problem remains of determining whether a sample is a good
representative of the entire dataset or not, without running the mining algorithm.

We argue that a sample whose entropy, as given by Eq. 2.1, is similar to the entropy
of the entire dataset, will more likely produce the same amount of frequent itemsets. We
show how the results from a set of experiments on synthetic and real datasets, confirm this
conjecture.
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We define:

∆Os =
kmax∑

k

(|Fk| − |F s
k |)∑kmax

k |Fk|
∗ 100% (2.5)

where kmax is the maximum between the maximal length of frequent itemsets in the
sample and in the real dataset, Fk is the set of frequent itemsets of length k in the entire
dataset and F s

r is the same in the sample.
In terms of metrics 2.5, a good sample will have ∆Os = 0. In a series of tests, we show

how the quality of a sample can be actually correlated with a variation in the entropy. In
Figure 2.16 we plotted ∆O versus the relative variation of entropy ∆H, for 200 random
samples of six datasets. A linear fit is superimposed to the experimental data, showing the
effective correlation between the two quantities.
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Figure 2.16: Correlation between variation in the output and variation in the entropy. Each
plot refer to a different dataset. Points inside a plot refer to different random samples of
the same dataset.

This result suggests that the entropy of a dataset is a good measure of the relevant
statistical properties of a dataset. Even without running the complete FSC algorithm, we
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can use entropy to measure how representative a sample is. An interesting problem would
be of finding an entropy preserving sampling algorithm.
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Chapter 3

Web mining

The Web is a rich source of information. An exponentially increasing set of multimedia
documents, a huge amount of computational and storage resources, used to manage such
documents, the related access patterns by a correspondingly increasing set of users. Ex-
tracting useful knowledge from this apparently endless mine of information, is a challenge
that has been faced at many levels.

One of the possible application of the so called Web Mining , i.e. DM on web data, is to
analyze data relative to user navigation sessions on a web server. Such sub-domain of Web
DM is called Web Usage Mining and is aimed at developing personalization or recommen-
dation systems. For such systems to be effective, the concern on performance impose the
utilization of efficient techniques, able to extract and use valuable knowledge during the
web server normal functioning with a limited overhead over its standard operations. Web
Usage Mining (WUM) systems are typically composed by two parts. An offline analysis of
the server access logs, where suitable categories are built, and then an online classification
of active requests, according to the offline analysis.

In this Chapter we propose a recommendation system, implemented as a module of
the Apache web server, that is able to dynamically generate suggestions to pages that
have not yet been visited by users and might be of potential interest. Differently from
previously proposed WUM systems, SUGGEST incrementally builds and maintain the his-
torical information, without the need for an offline component, by means of an incremental
graph partitioning algorithm. We analyze the quality of the suggestions generated and the
performance of the module.

3.1 Problem description

Web Mining is a popular technique that can be used to discover information “hidden” into
Web-related data. In particular, Web Usage Mining (WUM) is the process of extracting
knowledge from web users access or clikstream, by exploiting Data Mining (DM) technolo-
gies. It can be used for different goals such as personalization, system improvement and
site modification.

43
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Typically, the WUM personalization process is structured according to two components,
performed online and offline with respect to the web server activity [63], [101], [64], and [13].
The offline component is aimed at building the base knowledge used in the online phase, by
analyzing historical data, generally the server access log files. The main functions carried
out by this component are Preprocessing, i.e. data cleaning and session identification, and
Pattern Discovery, i.e. the application of DM techniques, like association rules, clustering
or classification.

The online component is devoted to the generation of personalized content. On the
basis of the knowledge extracted in the offline component, it processes a request to the
web server by adding personalized content which can be expressed in several forms such
as links to pages, advertisements, information relating to products or service estimated to
be of interest for the current user.

3.2 Web Usage Mining Systems

In the past, several WUM projects have been proposed to foresee users’ preference and
their navigation behavior, as well as many recent results improved separately the quality
of the personalization or the user profiling phase [66] [65] [30]. We focus on the architectural
issues of WUM systems, by proposing an incremental personalization procedure, tightly
coupled with the web server ordinary functionalities.

We review in the following the most significant WUM projects, which can be compared
with our system.

Analog [101] is one of the first WUM systems. It is structured according to two main
components, performed online and offline with respect to the web server activity. Past
users activity recorded in server log files is processed to form clusters of user sessions.
Then the online component builds active user sessions which are then classified into one
of the clusters found by the offline component. The classification allows to identify pages
related to the ones in the active session and to return the requested page with a list
of related documents. The geometrical approach used for clustering is affected by several
limitations, related to scalability and to the effectiveness of the results found. Nevertheless,
the architectural solution introduced was maintained in several other more recent projects.

In [63] B. Mobasher et al. presents WebPersonalizer a system which provides dynamic
recommendations as a list of hypertext links to users. The analysis is based on anonymous
usage data combined with the structure formed by the hyperlinks of the site. In order to
obtain aggregate usage profiles DM techniques such as clustering, association rules, and
sequential pattern discovery are used in the preprocessing phase. Using such techniques,
server logs are converted in session clusters (i.e. sequence of visited page) and pageview
clusters (i.e. set of page with common usage characteristics). The online phase considers
the active user session in order to find matches among the users activities and the discovered
usage profiles. Matching entries are then used to compute a set of recommendations which
will be inserted into the last requested page as a set of a list of hypertext links. Recently
the same author proposed [65] a hybrid personalization model that can dynamically chose
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between either non-sequential models (like association rules or clustering) or models where
the notion of time ordering is maintained (like sequences). The decision of which model to
used is based on an analysis of the site connectivity. WebPersonalizer is a good example
of the two level architecture for personalization systems.

Our system SUGGEST inherits most of its concepts from PageGather [77] a personal-
ization system concerned with the creation of index pages containing topic-focused links.
The site organization and presentation is enhanced by using automatically extracted users’
access patterns. The system takes as input a Web server log and a conceptual description
of each page at a site and uses a clustering methodology to discover pages that are visited
together. To perform this task a co-occurrence matrix M is built where each element Mij

is defined as the conditional probability that page i is visited, given that page j has been
visited in the same session. A threshold minimum value for Mij allows to prune some
uninteresting entries. The directed acyclic graph G associated with M is then partitioned
finding the graph’s cliques. Finally, cliques are merged to originate the clusters. This
solution introduced the hypotheses that users behave coherently during their navigation,
i.e. pages within the same session are in general conceptually related. This assumption is
called visit coherence. The generated static index pages are kept in a separate “Suggestion
Section” of the site. The main limitation of this approach is the loosely coupled integra-
tion of the WUM system with the web server ordinary activity. The system we propose is
implemented as a module of the Apache web server. This architectural choice allows us to
deliver personalized content with limited impact on the web server performance.

In [100] SpeedTracer, a usage mining and analysis tool is described. Its goal is to under-
stand the surfing behavior of users. Also in this case the analysis is done by exploring the
server logs entries. The main characteristic of SpeedTracer is that it does not require cook-
ies or user registration for session identification. In fact, it uses five kind of information:
IP, Timestamp, URL of the requested page, Referral, and Agent to identify user sessions.
The application uses innovative inference algorithms to reconstruct user traversal paths
and identify user sessions. Advanced mining algorithms uncover users’ movement through
a Web site. The final result is a collection of valuable browsing patterns which help web-
masters better understand user behavior. SpeedTracer generates three types of statistics:
user-based, path-based and group-based. User-based statistics pinpoint reference counts
by user and durations of access. Path-based statistics identify frequent traversal paths
in Web presentations. Group-based statistics provide information on groups of Web site
pages most frequently visited.

As we have observed in the introduction, in most of the previous works a two-tiers
architecture is generally used. The use of two components leads to the disadvantage to
have an “asynchronous cooperation” between the components themselves. The offline
component has to be periodically performed to have up-to-date data patterns, but how
frequently is a problem that has to be solved on a case-specific basis.

On the other hand the integration of the offline and online component functionalities
in a single component, poses other problems in terms of the overall system performance,
which should have a negligible impact on user response times. The system must be able to
generate personalized content in a fraction of user session. Moreover, the knowledge mined
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by the single component has to be comparable, if not better, with that mined by the two
separate components.

We focus our attention on the architecture of WUM systems, and not on the algorithms
used for the personalization process. As an extension of a previous work [13] we propose a
WUM system whose main contribution with respect to other solutions is to be composed of
only one component that is able to update incrementally and automatically the knowledge
obtained from historical data and online generate personalized content.

3.3 Web personalization with SUGGEST

3.3.1 Architecture

SUGGEST is implemented as a module of the Apache [94] web server, to allow an easy
deployment on potentially any kind of web site currently up and running, without any
modification of the site itself. The knowledge model is updated as requests arrive at the
server in an incremental fashion and used directly on the new requests in order to produce
personalized content.

Schematically, SUGGEST works as follows. As http requests arrive at the server: (i)
user navigation sessions {A} are built, (ii) the underlying knowledge base is updated in
the form of page clusters {L}, (iii) active user sessions are classified in one of the clusters,
(iv) finally a list of suggestions {S} is generated and appended to the requested page u.
Collapsing the two tiers into a single module pushed aside the asynchronous cooperation
problem: i.e. the need to estimate the update frequency of the knowledge base structure.

In Algorithm 2 the steps carried out by SUGGEST are presented. At each step SUGGEST
identifies the URL u requested (line 1) and the session to which the user belongs (line 2).
With the session id it retrieves the identifier of the URL v from which the user is coming
(line 3). According to the current session characteristics it updates the knowledge base
and generate the suggestions to be presented to the user. All this steps are based on a
graph-theoretic model which represents the aggregate information about the navigational
sessions.

3.3.2 The Session Model

To extract information about navigational patterns, our algorithm models the usage in-
formation as a complete graph G = (V, E). The set V of vertexes contains the identifiers
of the different pages hosted on the web server. The set of edges E is weighted using the
following relation:

Wij =
Nij

max{Ni, Nj}
(3.1)

where Nij is the number of sessions containing both pages i and j, Ni and Nj are respec-
tively the number of sessions containing only page i or page j. The rationale of Equation
3.1 is to measure of how many times pair of pages are visited together, but discriminating
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internal pages from the so called index pages. Index pages are those which, generally, do
not contain useful contents and are used only as a starting point for a browsing session. For
this reason dividing Nij by the maximum occurrence of the two pages reduces the relative
importance of links involving index pages. Index pages are very likely to be visited with
any other page and nevertheless are of little interest as potential suggestions. The data
structure we used to store the weights is an adjacency matrix M where each entry Mij

contains the value Wij computed according to formula 3.1.

Input: M, {L}, {A}, u
Output: A list {S} of suggestions
1: page idu = Identify Page(u); � Retrieves the id of the URL u by accessing a trie built on

top of all of the existing URLs.
2: session id = Identify Session(); � Using cookies.
3: page idv = Last Page(session id); � Returns the last page visited during the current session.
4: PW = A[session id];
5: if (!Exists(page idu, page idv, PW )) then
6: � pages (u,v) are not present in an active session
7: M [page idu, page idv]++;
8: if ((Wuv > MinFreq) ∧ (L[u] 6= L[v])) then
9: MergeCluster(L[u], L[v]); � Merges the two clusters containing u and v.

10: end if
11: end if
12: if (!Exists(page idu, PW )) then
13: M [page idu, page idu]++;
14: New L = Cluster(M ,L, page idu);
15: L = New L;
16: end if
17: push(u, PW );
18: S =Create Suggestions(session id,L);
19: return(S);

Algorithm 2: The SUGGEST algorithm. Inputs are the cooccurence matrix M , the list of
clusters L, the active user session A, the user request u.

Before computing the weights in M , it is first necessary to identify user sessions. One
option would be to apply some heuristics based on the IP address and time-stamp. The
main drawbacks of this approach are due to the presence of users behind proxies of NATs1.
In this case, in fact, those users appear as a single one coming from the NAT (or gateway)
machine. In SUGGEST users’ sessions are identified by means of cookies stored on the
client side. Cookies contain the keys to identify the clients’ sessions. Once a key has been
retrieved by our module, it is used to access a table which contains the corresponding
session id. The computational cost of such operation is thus relatively small. In fact, a

1Network Address Translators.
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hash table can be used to store and retrieve the keys allowing this phase to be carried out
in time O (1).

3.3.3 Clustering Algorithm

SUGGEST finds groups of strongly correlated pages by partitioning the graph according to
its connected component. The algorithm performed by this phase of SUGGEST is shown
in Algorithm 3. SUGGEST actually uses a modified version of the well known incremental
connected components algorithm [25]. Given an initial partitioning of the graph G into a
set of clusters {L} and a request page u, we need to determine if and how such request
modified the cluster partitioning of the graph. We start from u a Depth First Search (DFS)
on the graph induced by M and we search for the connected component reachable from
u. Once the component is found, we check if there are any nodes in previus component
not considered in the visit. If we find any such node, than the previously connected
component has been split and we continue applying the DFS until all the nodes have been
visited. In the worst case (when all the site URLs are in the same cluster and there is only
one connected component) the cost of this algorithm will be quadratic in the number of
pages of the site (to be more precise it will be linear in the number of edges of the complete
graph G). Actually, to reduce the contributions of poorly represented link, the incremental
computation of the connected components is driven by two threshold parameters. Aim of
these thresholds is to limit the number of edges to visit by:

1. filtering those Wij below a constant value. We called this value minfreq. Links (i.e.
elements Mij of M) whose values are less than minfreq are poorly correlated and
thus not considered by the connected components algorithm;

2. considering only components of size greater than a fixed number of nodes, namely
MinClusterSize. All the components having size lower than a threshold value are
discarded because considered not significant enough.

In general, the incremental connected component problem can be solved using an al-
gorithm working in O (|V |+ |E|A) time, where A = α (|E|, |V |) is the inverse of the
Ackermann’s function2. This is the case in which we have the entire graph and we would
incrementally compute the connected component by adding one edge at a time. Our case
is slightly different. In fact, we do not deal only with edge addition but also with with edge
deletion operations. Moreover, depending on the value chosen for minfreq, the number of
clusters and their sizes will vary, inducing a variation in the number of edges considered
in the clusters restructuring phase.

3.3.4 Suggestion generation

After this last step, we have to construct the actual suggestions list (Algorithm 4). This is
built in a straightforward manner by finding the cluster which have the largest intersection

2The Ackermann’s functions grows very fast so that its inverse grows very slowly.
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Input: session id, page idu, A[session id], L : L[page idu] = cluster id.
Output: An updated clustering structure.
1: ret val = L; clust=L[u];
2: C = {n ∈ [1..|L|] | L[n] = clust};
3: h = pop(C);
4: ret val[h] = h;
5: clust = h;
6: F 6= ∅;
7: while h 6= NULL do
8: for all (i ∈ G s.t. Whi > MinFreq) do
9: remove(C,i);

10: push(F ,i);
11: ret val[i]=clust;
12: end for
13: if F = ∅ then
14: pop(F ,h);
15: else
16: if (C 6= ∅) then
17: pop(C, h);
18: clust = h;
19: else
20: h = NULL;
21: end if
22: end if
23: end while
24: return(ret val);

Algorithm 3: The clustering phase.

with the current session. The final suggestions are composed by the most relevant pages
in the cluster, according to the order determined by the clustering phase. The cost of this
algorithm is proportional to the size of active sessions {A} and thus is constant (O(1)).

3.3.5 Experimental Evaluation

We performed an experimental evaluation of the SUGGEST module performance by mea-
suring both its effectiveness and its efficiency. The first measure is the most difficult to
define because it implies to be able to measure how much a suggestion has been useful
for the user. In [13] we introduced a quantity that allows to quantify the effectiveness -
i.e. the quality - of the suggestions. Such measure was based on the intersection of real
sessions with the corresponding set of suggestions. For every session Si composed by ni

pages there is a set of suggestions Ri, generated by the module in response to the requests
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Input: session id, page idu, A[session id], L : L[page idu] = cluster id.
Output: A list of url identifiers, i.e. the suggestions {S}.
1: clust= 0; max rank= 0; ret val= ∅;
2: for (i = 0; i < |A[session id]|; i + +) do
3: rank[i] = |{n ∈ A[session id] | L[n] = L[A[session id][i]]}|+ 1;
4: if (rank[i] > max rank) then
5: max rank = rank[i];
6: clust=L[A[session id][i]];
7: end if
8: end for
9: C = {n ∈ L | L[n] = clust};

10: for all (c ∈ C) do
11: for (i = 0; i < NUMSUGGESTIONS; i + +) do
12: if ((c ∈ A[session id] ∨ (Wcu < Wu,ret val[i])) then
13: break;
14: else
15: shift(ret val, i);
16: ret val[i] = c;
17: end if
18: end for
19: end for

Algorithm 4: The suggestions building phase

in Si. The intersection between Si and Ri is:

ωold
i =

| {p ∈ Si| p ∈ Ri} |
ni

(3.2)

With this measure we are not able to capture the potential impact of the suggestions
on the user navigation session. For example, if a page that the user would visit at the end
of the session is instead suggested at the beginning of the session, the suggestion in this
case could help the user finding a shorter way to what she/he is looking for. Therefore we
extend expression 3.2 taking into account the distance of the suggestions generated with
the actual pages visited during the session.

For every user session Si, we split the session into two halves. The first half S1
i is used

to generate a set of suggestions R1
i , the second half is used to measure the intersection with

the suggestions. For every page pk that belongs to the intersection S2
i ∩ R1

i and appears
in position k within S2

i , we add a weight f(k). We choose f so that more importance is
given to pages actually visited at the end of the session. The simplest choice is to take

f(k) = k (3.3)

A different form for f could have been chosen. For example to have the same coverage
measure as used in [65] it is sufficient to take f(k) = 1, or any constant value. It is also
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possible to increase the importance of the pages non linearly by taking f(k) = k2.

In conclusion, for the whole session log, the measure of the quality of the suggestions
is given by

Ω =

NS∑
i=1

∑ni/2
k=1 [[pk ∈ {S2

i ∩R1
i }]]

f(k)
F

NS

(3.4)

where NS is the number of sessions and [[expr]] is the truth function equal to 1 if expr is

TRUE, 0 otherwise. F is simply a normalization factor on the weights, i.e. F =
∑ni/2

j=1 f(j).

Starting from real life access log files, we generated requests to an Apache server running
SUGGEST and recorded the suggestions generated for every navigation session contained
in the log files. We considered three real life access log files, publicly available3: NASA,
USASK and BERKLEY containing the requests made to three different web servers. We
report in Table 3.1 the main features of such datasets.

Dataset Time window Ns

NASA 27 days 19K
USASK 180 days 10K
BERK 22 days 22K

Table 3.1: Access log files used to measure the quality of suggestions.
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Figure 3.1: Coverage of suggestions for the NASA, BERK, USASK access log files, varying
minfreq . We also plotted the result of a random suggestions generator.

3www.web-caching.com
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For each dataset we measured Ω. The results obtained are reported in Figure 3.1. In
all curves, varying the minfreq parameter, we measure Ω for the suggestions generated by
SUGGEST. We also plotted the curve relative to the suggestions generated by a random
suggestion generator. As it should be expected, the random generator performs poorly
and the intersection between a random suggestion and a real session is almost null. On
the other hand, suggestions generated by SUGGEST show a higher quality Ω, which, in all
dataset, reaches a maximum around minfreq=0.2.
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Figure 3.2: Impact of SUGGEST on the throughput of Apache (a) and Apache response
time with and without the SUGGEST module (b)

In order to measure the impact of the SUGGEST module on the overall performance of
the http server, we plotted the throughput (Figure 3.2 (a)), i.e. number of http requests
served per time unit, and the total time needed to serve one single request (Figure 3.2 (b)).

As we can see from the Figures, the impact of SUGGEST on the Apache web server
is relatively limited, both in terms of throughput and in terms of the time need to serve
a single requests. This limited impact on performance makes SUGGEST suitable to be
adopted in real life production servers. It must be noticed, however, that in its current
version SUGGEST allocates a buffer of memory whose dimension is quadratic in the number
of pages in the site. This might be a severe limitation in sites whose number of pages can
be of many thousands.



Chapter 4

Distributed Data Mining

Data Mining technology is not only composed by efficient and effective algorithms, executed
as stand alone kernels. Rather, it is constituted by complex applications articulated in the
non trivial interaction among hardware and software components, running on large scale
distributed environments. This last feature turns out to be both the cause and the effect of
the inherently distributed nature of data, on one side, and, on the other side, of the spatio-
temporal complexity that characterizes many DM applications. For a growing number of
application fields, Distributed Data Mining (DDM) is therefore a critical technology.

In this Chapter, after reviewing the state of the art and open problems in DDM (Sec-
tion 4.1), we describe the parallelization of DCI (Section 4.2), the Frequent Set Counting
algorithm introduced in Chapter 2. We developed a parallel and distributed version of DCI,
targeted at the execution on an SMP-based cluster of workstations. In order to be able to
optimize resource usage in a multi programmed large scale distributed platform, we study
(Section 4.3) the issues related to the scheduling of DM jobs on Grid [28] environments.

4.1 State of the art and open problems

4.1.1 Motivation for Distributed Data Mining

Due to the logistic organization of the entities that collects data – either private companies
or public institutions – data are often distributed at the origin. The sales point of a large
chain as Wal-Mart, or the branches of a bank or the census offices in a country, these are all
examples of data collected in a distributed fashion. Such data are typically too big to be
gathered at a single site or, for privacy issues, can only be moved, if ever possible, within
a limited set of alternative sites. In this situation the execution of DM tasks typically
involves the decision of how much data is to be moved and where. Also, summaries or
other forms of aggregate information can be moved to allow more efficient transfers.

In other cases, data are produced locally but due to their huge volume cannot be stored
in a single site and are therefore moved immediately after production to other storage loca-
tions, typically distributed on geographical scale. Examples are Earth Observing Systems

53
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(EOS) [73], i.e. satellites sending their observational data to different earth stations, high
energy physics experiments, that produce huge volumes of data for each event and send
the data to remote laboratories for the analysis. In these cases, data can be replicated
in more than one site and repositories can have a multi-tier hierarchical organization [22].
Problems of replica selection and caching management are typical in such scenarios.

The need for parallel and distributed architecture is not only driven by the data, but
also by the high complexity of DM computations. Often the approach used by the DM
analyst is exploratory, i.e. several strategies and parameter values are tested in order to
obtain satisfactory results. Also, in many applications data are produced in streams that
have to be processed on-line and in reasonable times with respect to the production rate
of the data and of the specific application domain. Using high performance parallel and
distributed architectures is therefore imperative.

4.1.2 DDM Systems

We give here some definitions of DDM systems, by analyzing three different approaches.
They pose different problems and have different benefits. Existing DDM systems can in
fact be classified in one of these approaches.

Data-driven. The simplest model for a DDM system only takes into account the dis-
tributed nature of data, but then relies on local and sequential DM technology. Since in
this system the focus is solely posed in the location of data, we refer to this model as
data-driven. In Figure 4.1 we sketch the data-driven architecture.

Figure 4.1: The data-driven approach for Distributed Data Mining systems.

In this model, data are located in different sites which do not need to have any com-
putational capability. The only requirement is to be able to move the data to a central
location in order to merge them and then apply sequential DM algorithms. The output of
the DM analysis, i.e. the final knowledge models are then either delivered to the analyst’
location or accessed locally where they have been computed.
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The process of gathering data in general is not simply a merging step and depends on
the original distribution. For example data can be partitioned horizontally – i.e. different
records are placed in different sites – or vertically – i.e. different attributes of the same
records are distributed across different sites. Also, the schema itself can be distributed,
i.e. different tables can be placed at different sites. Therefore when gathering data it is
necessary to adopt the proper merging strategy.

Although in this approach we can reuse much of the same DM technology available
for the sequential case, a strong limitation is posed by the necessity of gathering all data
in a single location. As already pointed out, this is in general unfeasible, for a variety of
reasons.

Model-driven. A different approach is the one we call model-driven, depicted in Figure
4.2. Here, each portion of data is processed locally to its original location, in order to
obtain partial results referred to as local knowledge models . Then the local models are
gathered and combined together to obtain a global model.

Figure 4.2: The model-driven model for Distributed Data Mining systems.

Also in this approach, for the local computations it is possible to reuse sequential DM
algorithms, without any modification. The problem here is how to combine the partial
results coming from the local models. Different techniques can be adopted, based on
voting strategies or collective operations [50], for example. Multi-agent systems may apply
meta-learning to combine partial results of distributed local classifiers [79]. The draw-back
of the model-driven approach is than it is not always possible to obtain an exact final
result, i.e. the global knowledge model obtained may be different from the one obtained
by applying the data-driven approach (if possible) to the same data. Approximated results
are not always a major concern, but it is important to be aware of that. Moreover, in this
model hardware resource usage is not optimized. If the heavy computational part is always
executed locally to data, when the same data is accessed concurrently, the benefits coming
from the distributed environment might vanish due to the possible strong performance
degradation.
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The Papyrus system [36] is a DDM system that implements a cost-based heuristic to
adopt either the data-driven or the model-driven approach.

Architecture-driven. In order to be able to control the performance of the DDM sys-
tem, it is necessary to introduce a further layer between data and computation. As show
in Figure 4.3, before starting the distributed computation, we consider the possibility of
moving data to different sites with respect to where they are originally located, if this turns
out to be profitable in terms of performances. Moreover, we introduce a communication
layer among the local DM computations, so that the global knowledge model is built during
the local computation. This allows for arbitrary precision to be achieved, at the price of a
higher communication overhead. Since in this approach for DDM the focus is on optimized
resource usage, we refer to this approach as the architecture-driven.

Figure 4.3: The architecture-driven approach for Distributed Data Mining systems.

The higher flexibility of this model and the potentially higher performance that it is
possible to achieve, are payed in terms of the higher management effort that it is necessary
to put in place. A suitable scheduling policy must be devised for the resource selection
layer. Moreover, DM sequential algorithms are not reusable directly and must be modified
or redesigned in order to take advantage of the communication channel among the different
DM computations.

A notable example of such system is the Optimal Data and Model Partitions (OPT-
DMP) framework [34] aimed at balancing performance and accuracy in DDM applications.

4.1.3 State of the art

Sequential DM, although always under development, is currently being applied in many
application domains and it can be considered an industry-ready technology, ready and
mature enough for delivery at industrial standards. The same does not hold for DDM,
where research still plays a crucial role in finding solid results. Despite this stage of
relative infancy , many important results have already been achieved. We review here the
most important of them.
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Parallel and Distributed DM Algorithms. The basic components of a DDM sys-
tem are DM algorithms, able to mine valuable knowledge in a distributed environment.
Many sequential clustering algorithms have been parallelized. In [12] [92] parallel imple-
mentation of the popular k-means algorithm [7] can be found. Talia et al. parallelized the
unsupervised classification algorithm Autoclass [78].

Distributed Classifiers have been studied [79] able to operate either on homogeneous or
heterogeneous data. They typically produce local models that are refined after exchanging
summaries of data with the other classifiers.

A different approach is adopted in the Collective Data Mining framework [71], where
instead of combining partial models coming from local analysis, globally significant pieces
of information are extracted from local sites.

For example in Collective Principal Component Analysis (CPCA) [49], principal com-
ponents are first found on local portion of the data. Then a sample of the data, projected
on the local eigenvectors is exchanged among the distributed processes, PCA is performed
in the reassembled data and the dominant eigenvectors found are transformed back to the
original space.

In Distributed Association Rule Mining algorithms [102] we find the following major
approaches.

Count distribution according to which the transaction database is statically partitioned
among the processing nodes, while the candidate set Ck is replicated. At each it-
eration every node counts the occurrences of candidate itemsets within the local
database partition. At the end of the counting phase, the replicated counters are
aggregated, and every node builds the same set of frequent itemsets Fk. On the
basis of the global knowledge of Fk, candidate set Ck+1 for the next iteration is then
built. Inter-Node communication is minimized at the price of carrying out redundant
computations in parallel.

Data distribution attempts to utilize the aggregate main memory of the whole parallel
system. Not only the transaction database, but also the candidate set Ck are parti-
tioned in order to permit both kinds of partitions to fit into the main memory of each
node. Processing nodes are arranged in a logical ring topology to exchange database
partitions, since every node has to count the occurrences of its own candidate item-
sets within the transactions of the whole database. Once all database partitions have
been processed by each node, every node identifies the locally frequent itemsets and
broadcasts them to all the other nodes in order to allow them to build the same
set Ck+1. This approach clearly maximizes the use of node aggregate memory, but
requires a very high communication bandwidth to transfer the whole dataset through
the ring at each iteration.

Candidate distribution exploits problem domain knowledge in order to partition both
the database and the candidate set in a way that allows each processor to proceed
independently. The rationale of the approach is to identify, as execution progresses,
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disjoint partitions of candidates supported by (possibly overlapping) subsets of dif-
ferent transactions. Candidates are subdivided on the basis of their prefixes. This is
possible because candidates, frequent itemsets, and transactions, are stored in lexi-
cographical order. Depending from the resulting candidate partitioning schema, the
approach may suffer from poor load balancing. The parallelization technique is how-
ever very interesting. Once the partitioning schema for both Ck and Fk is decided,
the approach does not involve further communications/synchronizations among the
nodes.

The results of the experiments described in [5] demonstrate that algorithms based on
Count Distribution exhibits optimal scale-up and excellent speedup, thus outperforming
the other strategies. Data Distribution resulted the worst approach, while the algorithm
based on Candidate Distribution obtained good performances but paid a high overhead
caused by the need of redistributing the dataset.

We propose in Section 4.2 an hybrid strategy adopted in the parallelization of DCI where
count-distribution is adopted for the first counting-based steps, and candidate-distribution
for the intersection-based phase of the algorithm.

Distributed DM Systems. Many architectural issues are involved in the definition of
full DDM systems.

Efficient communications are surely one of the main concerns. New protocols are being
studied and proposed, like the Simple Available Bandwidth Utilization Library (SABUL)
[39], which merges features of UPD and TCP to produce a light-weight protocol with
flow control, rate control and reliable transmission mechanism, designed for data intensive
applications over wide area high speed networks.

Other approaches try to optimize existing mechanisms for wide area data intensive
applications. In [19], [96] optimizations for the GridFTP [8] file transfer utility for Grid
systems [28], are studied.

One important issue in distributed systems is that of an efficient management of the
resources available, namely a scheduler components that have to determine the best hard-
ware/software resources to execute the DDM. The final target of such scheduler can be
to reduce the volume of the communications altogether [36], or to minimize the overall
completion time [59].

Another problem that it is worth mentioning is related to maintenance of the software
components. In wide scale distributed environments the software components used to
implement the DDM system might be several and undergo diverse evolution processes.
The actual control of such components might not always be within the DDM system.
Rather third-parties can let the DDM system use their components, but remain the only
responsible for updating or changing them when needed. Efforts are being carried on
toward the definition of standards for the interaction among such components, or for the
standardization of the format used to describe the knowledge produced [38]. The Predictive
Model Markup Language (PMML) [38], which provides the XML specification for several
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kinds of data mining sources, models, and tools, also granting the interoperability among
different PMML compliant tools, is the most interesting proposal to this regard.

There are also examples of complete DDM systems. JAM [79] and BODHI [51] are java
based multi-agent systems. According to the classification proposed in Section 4.1.2 they
follow the model-driven approach. In JAM each agent is placed in a different site, whereas
in BODHI agents can move across different sites, together with their status and learned
knowledge.

The previously mentioned Papyrus [36], is a systems that evaluates whether to move
data, models or results. It is flexible in that is implements multiple strategies, but still
lacks to take into account resource usage. The OPTDMP system [34], an architecture-
driven system, addresses this problem. It adopts a linear model for the cost of a DDM
computation. Its main innovative feature is to consider also the accuracy of the knowledge
mined. It lacks, on the other hand, a satisfactory cost model for DM computations.

A complete architecture for large scale distributed datamining is called the Knowledge
Grid (K-Grid), proposed in [93] by Talia et al.. Built on top of standard Grid middleware,
like the Globus Toolkit [29], it defines services and components, specific to the DM and
KDD domain. We will describe such framework in more detail in Section 4.3, where we
study the scheduling of DM tasks onto the K-Grid.

4.1.4 Research Directions

As already stated, DDM technology needs to be further studied and enhanced in order to
reach an industry standards. Such research efforts should be targeted at many levels.

There is the need for new distributed algorithms. Starting from the parallelization of
existing sequential ones, it is necessary to develop new strategies for DM computations.
One important feature that distributed DM algorithms should have is the ability of balanc-
ing accuracy and performance. In the distributed environment it might be better to find
less accurate results that can be delivered faster to the final user, rather than determine
exact results obtained in too long times.

Always more applications deal with streaming data that often require real-time exe-
cutions. There is therefore the need for on-line algorithms, able to cope with the ever
changing flow of input information.

An important issue that is becoming more studied in recent years, is that of the so
called Privacy Preserving Data Mining [56] [6]. In distributed environments it might not
be rare to be able to access to some data onto which privacy constraints hold. Distributed
algorithm should be able to handle privacy issues.

Using different software components in distributed environment calls for modern tech-
nologies to face problems related to components maintenance and managements, from
interface definition to model abstraction. An emerging technology to this regard is consti-
tuted by web services. A deep study of the possibilities offered by this technology to DDM
could lead to interesting results.

Our efforts in the field of DDM are targeted at the definition of efficient parallel algo-
rithms for association mining and at resource management issues in distributed environ-
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ments. In the following of this Chapter, we describe ParDCI (Section 4.2) a parallel version
of the already discussed DCI algorithm or Frequent Set Counting. In Section 4.3 we study
the problems related to the scheduling of DM tasks on large scale distributed platforms.
We propose an original cost model for DM tasks and a scheduling policy that properly
takes into account data transfers and computations.

4.2 Parallel DCI

In ParDCI, we adopted different parallelization strategies for the two phases of DCI, i.e. the
counting-based and the intersection-based ones. These strategies are slightly differentiated
with respect to the two levels of parallelism exploited: intra-node level within each SMP
to exploit shared-memory cooperation, and inter-node level among distinct SMPs, where
message-passing cooperation is used. ParDCI uses Count Distribution during the counting-
based phase, and a Candidate Distribution during the intersection-based phase [5, 40, 102].
The first technique requires dataset partitioning, replication of candidates and associated
counters. The final values of the counters are derived by all-reducing the local counters.
The latter technique is instead used during the intersection-based phase. It requires an
intelligent partitioning of Ck based on the prefixes of itemsets, but a partial/complete
replication of the dataset.

In the following we describe the different parallelization techniques exploited for the
counting- and intersection-based phases of ParDCI, the parallel version of DCI. Since our
target architecture is a cluster of SMP nodes, in both phases we distinguish between intra-
node and inter-node levels of parallelism. At the inter-node level we used the message–
passing paradigm through the MPI communication library, while at the intra-node level
we exploited multi-threading through the Posix Thread library. A Count Distribution
approach is adopted to parallelize the counting-based phase, while the intersection-based
phase exploits a Candidate Distribution approach [5].

4.2.1 The counting-based phase

At the inter-node level, the dataset is statically split in a number of partitions equal to
the number of SMP nodes available. The size of partitions depend on the relative powers
of nodes. At each iteration k, each node independently generates an identical copy of Ck.
Then each node p reads blocks of transactions from its own dataset partition Dp,k, performs
subset counting, and writes pruned transactions to Dp,k+1. At the end of the iteration, an
all-reduce operation is performed to update the counters associated to all candidates of
Ck, and all the nodes produce an identical copy of Fk.

At the intra-node level, each node runs a pool of threads. They have the task of
checking in parallel candidate itemsets against chunks of transactions read from Dp,k. The
task of subdividing the local dataset into disjoint chunks is assigned to a particular thread,
the Master Thread. It loops reading blocks of transactions and forwarding them to the
Worker Threads executing the counting task. To overlap computation with I/O, minimize
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synchronization, and avoid unnecessary data copying overheads, we used an optimized
producer/consumer schema for the cooperation among the Master and Worker threads.
Through two shared queues, the Master and Worker threads cooperate by exchanging
pointers to empty and full buffers storing blocks of transactions to be processed.

When all transactions in Dp,k have been processed by node p, the corresponding Master
thread performs a local reduction operation over the thread-private counters (reduction at
the intra-node level), before performing via MPI the global counter reduction operation
with all the other Master threads running on the other nodes (reduction at the inter-node
level). Finally, to complete the iteration of the algorithm, each Master thread generates
and writes Fk to the local disk.

4.2.2 The intersection-based phase

During the intersection-based phase, a Candidate Distribution approach is adopted at both
the inter- and intra-node levels. This parallelization schema makes the parallel nodes com-
pletely independent: inter-node communications are no longer needed for all the following
iterations of ParDCI.

Let us first consider the inter-node level, and suppose that the intersection-based phase
is started at iteration k + 1. Therefore, at iteration k the nodes build on-the-fly the bit-
vectors representing their own in-core portions of the vertical dataset. Before starting the
intersection-based phase, each node broadcasts its own partial vertical dataset to all the
other nodes in order to obtain a complete replication of the whole vertical dataset on each
node.

Dataset partitions are typically quite large, and depending on the capabilities of the
interconnection network, their broadcast may involve a significant communication over-
head. Moreover, common distributions of MPI such as MPICH and LAM/MPI, rely on
unoptimized implementations of collective operations.

In order to minimize the performance penalty due to the inefficiency of current MPI
implementations, we designed a more efficient broadcasting algorithm. According to our
algorithm:

1. before broadcasting its own partial vertical dataset, each node compresses it by means
of the Zlib data-compression library. The fastest Zlib compression level is used,
resulting in a negligible compression time, and in a size of the compressed dataset
partition that is in the average about one third of the uncompressed one;

2. to minimize network congestion, the all-to-all broadcast is then performed in (P −1)
communication steps, with P number of processing nodes involved. At each step
the nodes are split into P/2 disjoint sets, so that all possible node pairs are consid-
ered. During each communication step, the nodes of each pair exchange their own
compressed partitions in parallel, decompress the partition and store it in the buffer
allocated for holding the global vertical dataset.
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Figure 4.4: Elapsed times required to broadcast the vertical dataset with our optimized
broadcast algorithm (Opt.) exploiting or not compression, and the native MPI Bcast
routine.

Figure 4.4 compares the elapsed times of our optimized broadcast algorithm (Opt.),
exploiting or not compression (Comp. or No Comp.), with those obtained using the MPI
native broadcast routine MPI Bcast. The measures refer to the execution of ParDCI on a
cluster of linux workstations with a switched FastEthernet network. We used two synthetic
datasets and ran the tests on 2, 4, and 8 nodes. The size of the vertical dataset broadcast is
about 28MB for dataset T20I16D1000K, and 57 MB for dataset T20I16D2000K. When the
compression is exploited, the sizes of the same vertical datasets decrease to about 10MB
and 20MB, respectively. In this case, the broadcast times reported include also the time
required to compress and decompress data. As it can be seen, our algorithm scales well and
results in broadcast times remarkably lower than those obtained by using the native MPI
broadcast routine. Moreover, compression results to be advantageous when more than two
processing nodes are used.

Once the global vertical dataset is built on each node, the frequent set Fk computed
in the last counting-based iteration is partitioned, and a disjoint partition Fp,k of Fk is
assigned to each node p, where

⋃
p Fp,k = Fk.

Such partitioning entails a Candidate Distribution parallelization schema, according to
which each node p will be able to generate a unique F p

k (k > k) independently of all the

other nodes, where F p
k ∩ F p′

k = ∅ if p 6= p′, and
⋃

p F p
k = Fk. Candidate Distribution paral-

lelization strategies can severely suffer load imbalance. We thus paid particular attention
to design the strategy adopted to partition Fk.

Our partitioning strategy works as follows. First, Fk is split into l sections on the
basis of the prefixes of the lexicographically ordered frequent itemsets included. All the
frequent k-itemsets that share the same k−1 prefix are assigned to the same section. Since
candidate (k + 1)-itemsets are generated as the union of two frequent k-itemsets sharing



4.2. PARALLEL DCI 63

the first k−1 items, partitioning according to the k−1 prefixes assures that all candidates
can be generated starting from one (and only one) of the l disjoint sections of Fk. Clearly,
the same holds for all k > k as well.

The Fp,k partitions are then created by assigning the l sections to the processing nodes
with a simple greedy strategy that considers a weight associated to each section. The
weight is an estimate of the computational cost associated with the section. Such cost
is dominated by the cost of the intersections, which is on turn related to the number of
candidates that will be generated from the itemsets in the section.

ParDCI uses two different methods to estimate the computational cost of a section.
When the number of different prefixes is large with respect to the number P of processing
nodes used, the weight associated to each section is simply the number of itemsets belonging
to the section itself. In fact, when l � P holds, we can expect to obtain a good load
balancing also adopting such a trivial method. Otherwise, when the number of sections is
not very large (as often happens when dense datasets are mined), it is necessary to assign
a weight proportional to the expected computational cost for the section.

The basic idea is that the candidates obtained from a section are related to the order of
the dataset partition constituted by the tidlists of the distinct items present in the section.
The more ordered the partition is, the more candidates candidates will be found.

Following an analysis similar to the one illustrated in Section 2.5, we assigned to each
section a weight proportional to the quantity H1, measured for the corresponding section.

Once completed the partitioning of Fk, the nodes independently generate the associated
candidates and determine their supports by intersecting the corresponding bit-vectors.
Nodes continue to work according to the schema above also for the following iterations,
without any communication exchange.

At the intra-node level, a similar Candidate Distribution approach is employed, but
at a finer granularity by using dynamic scheduling to ensure load balancing among the
threads. In particular, at each iteration k the Master thread of a node p initially splits
the local partition of Fp,k−1 into x disjoint partitions Si, i = 1, . . . , x, where x � t, and
t is the number of active threads. The boundaries of these x partitions are then inserted
in a shared queue. Once the shared queue is initialized, also the Master thread becomes a
Worker. Hereinafter, each Worker thread loops and self-schedules its work by performing
the following steps:

1. access in mutual exclusion the queue and extract information to get Si, i.e. a partition
of the local Fp,k−1. If the queue is empty, write Fp,k to disk and start a new iteration.

2. generate a new candidate k-itemset c from Si. If it is not possible to generate further
candidates, go to step 1.

3. compute on-the-fly the support of c by intersecting the vectors associated to the k
items of c. In order to reuse effectively previous work, each thread exploits a private
cache for storing the partial results of intersections (see Section 2.4.4). If c turns out
to be frequent, put c into Fp,k. Go to step 2.
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4.2.3 Performance evaluation of ParDCI

We evaluated ParDCI on both dense and sparse datasets. Figure 4.5 plots the total execu-
tion time required by ParDCI to mine datasets T20I16D2000K and connect-4 as a function
of the support threshold s. The curves refer to the execution of ParDCI on 1, 2, 4, and 8
processing nodes. The pure multi-threaded version of ParDCI is used for the tests with a
single SMP node, while in the tests with 2, 4, and 8 nodes ParDCI also exploits inter-node
parallelism.
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Figure 4.5: Datasets T20I16D2000K (a) and connect-4 (b): ParDCI execution times on 1,
2, 4, and 8 processing nodes, varying the minimum support threshold.
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Figure 4.6: Speedups (a) and relative load imbalance (b) achieved by running ParDCI on
various datasets.

Figure 4.6 plots the speedups obtained on various datasets as a function of the number
of SMP nodes used. As it can be seen, the speedups achieved are in most cases good, with
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efficiencies higher than 0.75. Only for the USBCensus1990 dataset the speedup resulted
remarkably lower than in the other cases.

The reason of this lower scalability is evidenced by Figure 4.6.(b) that plots the dif-
ferences in percentage over the total execution time between the first and last node to
end execution. The poor load balancing achieved on the USCensus1990 dataset is due the
Candidate Distribution phase of the algorithm: in fact, more than the 50% of the total
candidates mined originates from only 3 sections of Fk. Given such an unusual candidate
distribution, balancing well the load becomes impossible. On the other hand, we could ob-
tain a finer candidate partitioning by forcing DCI to start its intersection-based phase later.
Even if this trick allows DCI to obtain a good load balance, the total execution time be-
come remarkably worse, due to the cost of performing an additional expensive count-based
iteration. In all the other cases, we observed a limited imbalance, thus demonstrating that
the strategies adopted for partitioning dataset and candidates on our homogeneous cluster
of SMPs are effective.

4.3 Scheduling DM tasks on distributed platforms

The distributed nature of data already discussed in this Chapter and the need for high
performance, make large scale distributed environments, like the Grid [28], a suitable envi-
ronment for DDM [89]. Grids may in fact provide coordinated resource sharing, collabora-
tive processing, and high performance computing platforms. Since DDM applications are
typically data intensive, one of the main requirements of such a DDM Grid environment
is the efficient management of storage and communication resources.

In the rest of this Chapter we are going to introduce the problem of scheduling DM
tasks on large scale distributed platforms provided with special purpose facilities for DDM,
namely the Knowledge Grid (K-Grid) [93]. One of the main problems of grid schedulers
for DM, is related to cost modeling for DM tasks. We propose an architecture for a K-Grid
scheduler that adopts a sampling based original technique for performance prediction.

4.3.1 Data and Knowledge Grid

A significant contribution in supporting data intensive applications is currently pursued
within the Data Grid effort [22], where a data management architecture based on storage
systems and metadata management services is provided. The data considered here are
produced by several scientific laboratories geographically distributed among several insti-
tutions and countries. Data Grid services are built on top of Globus [29], a middleware for
Grid platforms, and simplify the task of managing computations that access distributed
and large data sources.

The Data Grid framework share most of its requirements with the realization of a Grid-
based DDM system, where data involved may originate from a larger variety of sources.
Even if the Data Grid project is not explicitly concerned with data mining issues, its basic
services could be exploited and extended to implement higher level grid services dealing
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with the process of discovering knowledge from larger and distributed data repositories.
Motivated by these considerations, in [93] a specialized grid infrastructure named Knowl-
edge Grid (K-Grid) has been proposed (Figure 4.7). This architecture was designed to
be compatible with lower-level grid mechanisms and also with the Data Grid ones. The
authors subdivide the K-Grid architecture into two layers: the core K-grid and the high
level K-grid services. The former layer refers to services directly implemented on the top
of generic grid services, the latter refers to services used to describe, develop and exe-
cute parallel and distributed knowledge discovery (PDKD) computations on the K-Grid.
Moreover, the layer offers services to store and analyze the discovered knowledge.

Figure 4.7: General scheme of the Knowledge Grid software architecture. This picture is
taken from [93].

We concentrate our attention on the K-Grid core services, i.e. the Knowledge Directory
Service (KDS) and the Resource Allocation and Execution Management (RAEM) services.
The KDS extends the basic Globus Metacomputer Directory Service (MDS) [27], and is
responsible for maintaining a description of all the data and tools used in the K-Grid. The
metadata managed by the KDS are represented through XML documents stored in the
Knowledge Metadata Repository (KMR). Metadata regard the following kind of objects:
data sources characteristics, data management tools, data mining tools, mined data, and
data visualization tools.

Metadata representation for output mined data models may also adopt the (PMML) [38]
standard, already mentioned in Section 4.1.3.

The RAEM service provides a specialized broker of Grid resources for DDM compu-
tations: given a user request for performing a DM analysis, the broker takes allocation
and scheduling decisions, and builds the execution plan, establishing the sequence of ac-
tions that have to be performed in order to prepare execution (e.g., resource allocation,
data and code deployment), actually execute the task, and return the results to the user.
The execution plan has to satisfy given requirements (such as performance, response time,
and mining algorithm) and constraints (such as data locations, available computing power,
storage size, memory, network bandwidth and latency). Once the execution plan is built,
it is passed to the Grid Resource Management service for execution. Clearly, many differ-
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ent execution plans can be devised, and the RAEM service has to choose the one which
maximizes or minimizes some metrics of interest (e.g. throughput, average service time).

4.3.2 The Knowledge Grid Scheduler

K-Grid services can be used to construct complex Problem Solving Environments, which
exploit DM kernels as basic software components that can be applied one after the other,
in a modular way. For example we can perform an initial clustering on a given dataset in
order to extract groups of homogeneous records, and then look for association rules within
each cluster. An example of such system is the VEGA visual tool [20] for composing and
executing DM applications on the K-Grid.

A general DM task on the K-Grid can therefore be described as a Directed Acyclic
Graph (DAG) whose nodes are the DM algorithms being applied, and the links represent
data dependencies among the components. K-Grid users interact with the K-Grid by
composing and submitting DAGs, i.e. the application of a set of DM kernels on a set of
datasets.

In this scenario, one important service of the K-Grid is the one that is in charge of
mapping task requests onto physical resources. The user will in fact have a transparent
view of the system and possibly little or no knowledge of of the physical resources where
the computations will be executed, neither he or she knows where the data actually reside.
The only thing the user must be concerned with, is the semantic of the application, i.e.
what kind of analysis he or she wants to perform and on which data.

4.3.3 Requirements

Many efforts have already been devoted to the problem of scheduling distributed jobs in
general [88], [90] and for Grid platform in particular, like Nimrod-g [1], Condor [24] and
AppLeS [15]. Recently a general architecture for grid schedulers has been outlined in [85]
by J. Schopf. She describes three main phases of the activity of a grid scheduler. The first
phase is devoted to resource discovery. During this phase a set of candidate machines where
the application can be executed, is built. This set is obtained by filtering the machines
where the user has enough privileges to access and at the same time satisfy some minimum
requirements, expressed by the user. In the second phase one specific resource is selected
among the ones determined in the previous phase. This choice is performed based in
information about system status - e.g. machine loads, network traffic - and again possible
user requirements in term of execution deadline or limited budget. Finally, the third phase
is devoted to actual job execution, from reservation to completion, though submission and
monitoring.

The second phase described above is the most challenging, since it is strictly application
dependent. Many of the schedulers mentioned above propose their own solution to the
problem. Nevertheless, there are some characteristics of scheduling DM tasks, that make
inadequate the previous approaches.
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First of all we lack an accurate analytical cost model for DM tasks. In the case of
the Nimrod-g system, the parametric, exactly known cost of each job allows the system to
foresee with a high degree of accuracy which is going to be the execution time of each job.
This does not hold for DM, where the execution time of an algorithm in general depend
on the input parameters in a non linear way, and also on the dataset internal correlations,
so that, given the same algorithm, the same set of parameters and two dataset of identical
dimensions, the execution time can vary of orders of magnitude. The same can be said for
other performance metrics, as memory requirement and I/O activity.

The other characteristic is that scheduling a DM task in general implies scheduling
computation and data transfer [74]. Traditional schedulers typically only address the first
problem, that of scheduling computations. In the case of DM, since the dataset are typically
big , it is also necessary to properly take into account the time needed to transfer data and
to consider when and if it is worth to move data to a different location in order to optimize
resource usage or overall completion time.

We resume the characteristics of the scheduler we want to design, for mapping DM
tasks on the K-Grid. We call such scheduler the Knowledge Grid Scheduler, or KGS.

On-line. KGS must schedule the components of DM DAGs as soon as they arrive in the
system.

Dynamic. It must apply cost models to predict future resource status and pro-actively
assign jobs to resources.

Adaptive. It must continuously interact with the K-Grid Information Service, in order to
have an updated view of the system status in terms of machine and network loads.

4.3.4 Design of KGS

We describe here the design of KGS. A model for the resources of the K-Grid, depicted in
Figure 4.8 is composed by a set of hosts, onto which the DM tasks are executed, a network
connecting the hosts and a centralized scheduler, KGS, where all requests arrive.

The first step is that of task composition. We do not actually deal with this phase and
we only mention it here for completeness. As explained earlier, we consider that the basic
building blocks of a DM task are algorithms and datasets. As shown in Figure 4.9 they can
be combined in a structured way, thus forming a DAG.

DM components correspond to a particular algorithm to be executed on a given dataset,
provided a certain set of input parameters for the algorithm. We can therefore describe
each DM components Λ with the triple:

Λ = (A, D, {P}) (4.1)

where A is the data mining algorithm, D is the input dataset, and {P} is the set of
algorithm parameters. For example if A corresponds to “Association Mining”, then {P}
could be the minimum confidence for a discovered rule to be meaningful. It is important
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Figure 4.8: Physical resources in the K-Grid.

to notice that A does not refer to a specific implementation. We could therefore have
more different implementations for the same algorithm, so that the scheduler should take
into account a multiplicity of choices among different algorithms and different implementa-
tions. The best choice could be chosen considering the current system status, the programs
availability and implementation compatibility with different architectures.

Choosing the set of resources onto which the DAG can be mapped, corresponds to a
modification of the original DAG according to the features of the resources chosen. In
Figure 4.10 we schematically represent how such modification takes place.

The original DM task on the left hand side, is composed by the application of a first
clustering algorithm on a certain dataset, and then by the application of an algorithm for
association mining on each cluster found. Finally all the results are gathered for visual-
ization. In the mapping reported on the right hand side of Figure 4.10, we add a node to
the top of the graph, which corresponds to the initial determination of the input dataset.
Moreover, we detail the structure of the actual computation performed when we chose a
specific implementation for each software component. In Figure 4.10 we reported the case
where one of the association rules mining is performed on a parallel architecture, and its
structure is therefore shown.

In this way, starting from a semantic DAG, we define a physical DAG, derived from
the first one, with all the components mapped onto actual physical resources.

This process is repeated for all the DAGs that arrive at the scheduler.

The global vision of the system is summarized in Figure 4.11. The first step is the
creation of the semantic DAGs from the basic components. This step is in general per-
formed by several users at the same time. Therefore we have a burst of DAGs that must be
mapped on the system. Semantic DAGs queue in scheduler and wait their turn. When a
DAG is processed, the scheduler build the physical and determine the best set of resources
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Figure 4.9: Composition of a DM DAG in terms of basic building blocks: datasets and
algorithms.

where the DAG can be mapped. This is done by taking into account current system status,
i.e. network and machines load as induced by previous mappings, and also by verifying
that all data dependencies are satisfied. Referring to the example above, the scheduler
must first schedule the clustering algorithm and then the association mining.

Scheduling DAGs on a distributed platform is a non-trivial problem which has been
faced by a number of algorithms in the past. See [55] for a review of them. Although
it is crucial to take into account data dependencies among the different components of
the DAGs present in the system, we first want to concentrate ourselves on the cost model
for DM tasks and on the problem of bringing communication costs into the scheduling
policy. For this reason, we introduce in the system an additional component that we
call serializer (Figure 4.12), whose purpose is to decompose the tasks in the DAG into a
series of independent tasks, and send them to the scheduler queue as soon as they become
executable w.r.t. the DAG dependencies.

Such serialization process is not trivial at all and leave many important problems
opened, such as determine the best ordering among tasks in a DAG that preserve data
dependencies and minimizes execution time.

Nevertheless, at this stage of the analysis, as already stated, we are mainly concerned
with other aspects in the system, namely the definition of an accurate cost model for single
DM tasks and the inclusion of communications into the scheduling policy.

In the following we give a more accurate description of the mapping process, starting
from the definition of models for the system architecture, the cost of DM tasks, and their
the execution.
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Figure 4.10: Mapping of a DAG onto physical resources permits to obtain cost measures
for the DM task associated to the DAG.

4.3.5 Architecture model

The K-Grid architecture is composed by a set of clusters. Every host has a storage unit
and contains a subset of the datasets available in the system. Dataset in general may be
replicated at different sites. We assume that every host has the complete set of all available
algorithms in the system, so that it is only necessary to move data and not algorithms.

Hosts are connected by fast link in Local Area Networks (LANs), thereby forming
clusters . Slower links of a geographical Wide Area Network (WAN), connect the clusters.

We assume the scheduler is able to have a complete image of the system at any time,
in particular it is aware of the load on each host and of the network status. The scheduler
is, logically, the system front-end to the users, and provides them a coherent view of the
system. From the front-end, users can choose a dataset and a DM task to be performed on
the dataset, among a list of possibilities. A user request generates a job submission to the
scheduler, which in turn will locate the data, chose the best algorithm implementation and
will assign the task to a specific host or set of hosts. At this level we assume that hosts are
all locally controlled by batch queues that allow only one job to be executed at the time.

Modeling networks is in general a nontrivial issue, due to the high complexity of the
system to be described and to the many factors that cooperate in determining a single
event: bit packets transfer from one location to another one in the network. When con-
sidering geographical networks, the complexity is so high to vanish most of the modeling
efforts [75]. In our system, network links are the channel for dataset transfer, where the
dataset range typically from hundreds of MB to tens of GB. Therefore we are not inter-
ested in the single IP packet, but rather in the overall link capacity when transmitting
big datasets. For this reason we assume that the Wide Area Network (WAN) connecting
the clusters can be described by a fixed bandwidth pipe. The bandwidth we refer to, is
an experimental measure of the effective link capacity when transferring big files, without
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Figure 4.11: The whole system

taking into account all the physical details.

Similar considerations also motivated the architecture proposed in [96] to obtain an
experimental measure of the bandwidth experimented in wide area data transfers, based
on past transfers log information and current network status. The errors made by these
predictions are still non-negligible, but in most cases it is possible to have a reasonable
estimate on the transfer time.

LAN and WAN links are therefore described by a function of the number of the com-
munications taking place.

For WAN links transmitting big datasets, we can assume a constant bandwidth up
to a given number of connections, after that, the effective measured bandwidth starts
decreasing. If fij is the function describing the effective measured bandwidth of the link
between nodes i and j, and n is the number of files being transferred between i and j, we
choose f as

fij(n) =

b if n ≤ n̂

b
n̂

n
if n > n̂

(4.2)

where b is the effective bandwidth and n̂ is the maximum number of connections that
preserve the service time.

In Figure 4.13 we report the bandwidth experimented when transferring a 16 MBytes
file across three links connecting three sites: Pisa-Venice (PI-VE), Pisa-Cosenza (PI-CS)
and Cosenza-Venice (VE-CS). We plot the bandwidth measured every hour, along a time
interval of one week, for a single, double and triple stream transfer. The simulation started
on a Tuesday morning at 9 am.

As it can be seen, there are essentially two different regimes: the unloaded one, char-
acterized by a bandwidth of about 1Mbps with small fluctuations, which is essentially ex-
perimented at night ad during the weekend. The other regime is characterized by a lower
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Figure 4.12: We simplify the DAG-based description of DM applications in order to be
able to test the cost model for DM tasks and the scheduling policy.

average bandwidth, about 0.5Mbps, with bigger fluctuations. We can therefore adjust the
model proposed by considering two different values for bij according to the particular time
of the day at which the transfer is taking place.

We resume the global system architecture in Figure 4.14.
We plotted only the entities that are relevant for scheduling, in terms of queuing net-

work. This description of the system will be useful when describing the scheduling policy.
The entities represented in Figure 4.14 are the hosts, which are described by means of batch
queues Qi, one for each node, network links, described by shared service centers with no
queue and a service time which is function of the source, the destination and of the number
of connections already present with the same source and destination. Finally the scheduler
itself is represented. Its internal structure is composed by three queues, whose behavior
will be discussed in the Section 4.3.7.

4.3.6 Cost model

The critical part of our scheduler is the cost model adopted for the execution of DM tasks.
In [54] a cost model is proposed for distributed DM algorithms. The authors propose a
classification of distributed DM systems, which can be either client-server or agent based.
They find cost models for both approaches and determine a heuristic to chose which one
is the most convenient. They make the strong assumption that the actual cost of the DM
task is known in advance. Another limit of their analysis is that data transfers are not
taken into account properly.

In [46] [16] the memory access patterns of DM applications are studied in order to find
optimization strategies and a characterization of such patterns. Among other considera-
tions, the authors pointed out that most of the results do not depend on the number of
records of the input dataset.
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Figure 4.13: The measured bandwidth for the transfer of a 16MB dataset between Pisa
and Venice (bottom), Pisa and Cosenza (top), Cosenza and Venice (middle), at different
hour of the day, during a period of one week, starting from a Tuesday morning at 9 am.

The model we adopt in our system is the following. We suppose that when jobs arrive
in the system we ignore their actual cost in terms of memory required and total execution
time. For each task, we consider two possible alternatives: either to execute it sequentially,
or to run it in parallel. In both cases we have to consider the cost of transferring the input
dataset if the target host does not hold a copy of the data.

For both cases the general form for the total execution time of the data mining job,
can be written as the sum of three terms:

T = Tinput + TDM + Toutput (4.3)

where Tinput is the time needed for transferring the input dataset from the location
where it is stored, to the machine where it will be executed, TDM is the actual cost of the
data mining task on that specific machine, and Toutput is the time needed for transferring
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Figure 4.14: The model of the complete system, including computational resources (clus-
ters), network links and the scheduler.

the output to the final location, which at this level we assume to be the front end location.
As explained before, we can work out Tinput and Toutput once we know the effective

bandwidth among the nodes and the size of the dataset being transferred.
In the case of a sequential execution, the total execution time needed to complete job

Λ(A, D, {P}) on host i given the input dataset D is stored on host h and the result has to
be delivered at site k, is thus:

TΛ
i =

|D|
bhi

+ τΛ
i +

|αΛD|
bik

(4.4)

where τΛ
i is the cost of the data mining task and |αΛD| is the size of the output

produced by the algorithm. Of course, the relative communication costs involved in dataset
movements are zeroed if either h = i or h = k.

We now consider the cost of the parallel execution. In this case the input dataset has to
be partitioned among the nodes of the cluster cj. The total execution time can be therefore
written as:

TΛ
j =

∑
i∈cj

|D|/|cj|
bhi

+ τΛ
j +

∑
i∈cj

|αΛ(D)|/|cj|
bik

(4.5)

Of course, the relative communication costs are zeroed if the dataset is already dis-
tributed, and is allocated on the nodes of cj.

If we assume that all the parallel algorithms have an ideal behavior, and their speedup
is optimal, we can say that the parallel execution time for the data mining task on cluster
j, i.e. τΛ

j , is given by the execution time of the same task on a single node of the cluster,
divided by the number of nodes in the cluster:

τΛ
j =

τΛ
h

|cj|
. (4.6)
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We therefore have a cost model which is based on the knowledge of the sequential
implementation of the algorithm. The problem is how to determine this cost. We propose
to use sampling to obtain this information. Traditionally, sampling has been used as an
approximation to the knowledge that can be extracted from a dataset by a DM algorithm
[107] [80]. Here we are instead using sampling as a method for performance prediction.

The hypotheses behind this idea is that the relevant performance factors like total
execution time or the amount of memory required, in most cases scale linearly with the
input dataset size.

Based on this assumption, the cost of a data mining job Λ is given by the execution
time of the same job on a sample of the input dataset. If s ∈ [0, 1] is the sampling rate,
we can write:

τΛ
i =

τΛs
i

s
(4.7)

where Λs = Λ(A, Ds, {P}). The application of this idea is therefore to pre-execute the
data mining task on a small sample of the original dataset, and to forecast the actual job
duration based on this measurement.

The last factor we need to take into account is the different processor performances.
We assume that such differences can be captured by a unique performance factor, so that
the execution time of job Λ on a generic host h is given by:

τΛ
h =

τΛs
i

s
pih (4.8)

where pih is the relative performance of nodes i and h.
The performance information coming from sampling can also be reused for more than

one job request. Therefore, while sampling jobs are being executed, the scheduler can build
a knowledge model to use for performance prediction.
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Figure 4.15: Execution time of the DCI FSC algorithm (a), and the k-means clustering one
(b), as a function of the sample rate of the input dataset.
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In order to validate the sampling-based method for performance prediction, we an-
alyzed two DM algorithms: the counting based phase [67] of DCI (see Chapter 2) and
k-means [12]. We ran DCI and k-means on synthetic datasets by varying the size of the
sample considered. The results of the experiments are promising: both algorithms ex-
hibit quasi linear scalability with respect to the size of the sample of a given dataset,
when user parameters are fixed. Figure 4.15.(a) reports the DCI completion times on a
dataset of medium size (about 40 MB) as a function of the size of the sample, for different
user parameters (namely the minimum support s% of frequent itemsets). Similarly, in
Figure 4.15.(b) the completion time of k-means is reported for different datasets, but for
identical user parameters (i.e., the number k of clusters to look for). The results obtained
for other datasets and other user parameters are similar, and are not reported here for sake
of brevity. Note that the slopes of the various linear curves depend on both the specific
user parameters and the features of the input dataset D. Therefore, given a dataset and
the parameters for executing one of these DM algorithms, the slope of each curve can be
captured by running the same algorithm on a smaller sampled dataset D̂.

For other algorithms, scalability curves may be more complex than a simple linear one.
For example when the dataset size has a strong impact on the in-core or out-core behavior
of an algorithm, or on the main memory occupation. So, in order to derive an accurate
performance model for a given algorithm, it should be important to perform an off-line
training of the model, for different dataset characteristics and different parameter sets.

Another problem that may occur in some DM algorithms, is the generation of false
patterns for small sampling sizes. In fact, according to [107], we found that the performance
estimation for very small sampling sizes may overestimate the actual execution times on
the complete datasets. An open question is to understand the impact of this overestimation
in our Grid scheduling environment.

4.3.7 Execution model and scheduling policy

We now describe how this cost model can be used by a scheduler that receives a list of
jobs to be executed on the K-Grid, and has to decide for each of them which is the best
resource to start the execution on.

Choosing the best resource implies the definition of a scheduling policy, targeted at the
optimization of some metric. One frequent choice [88] is to minimize the completion time
of each job. This is done by taking into account the actual ready time for the machine
that will execute the job - remember that machines are locally controlled by batch queues
- and the cost of execution on that machine, plus the communications needed. Therefore
for each job, the scheduler will chose the machine that will finish the job earlier. For this
reason in the following we refer to such policy as Minimum Completion Time (MCT).

Jobs Λ(A, D, {P}) arrive at the scheduler from an external source, with given times-
tamps. They queue in the scheduler and wait. We assume the jobs have no dependencies
among one another and their inter-arrival time is given by an exponential distribution.
When jobs arrive they have a sampling flag turned on. Such flag tells the scheduler that
the job is currently of unknown duration. If the scheduler does not have any performance
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measure for that job, given by previous execution of another similar job, then it generates
a smaller sampling job.

The scheduler internal structure can be modeled as a network of three queues, plotted
in Figure 4.14, with different policies.

Jobs arrive in the main queue Qm, where sampling jobs are generated and appended
to the sampling queue Qs. Both queues are managed with a FIFO policy. From Qs

jobs are inserted into the system for execution. Once sampling is completed, the job in
inserted in the final queue Qf , where it is processed for the real execution. Since the
scheduler knows the duration of jobs in Qf , due to the prior sampling, Qf is managed with
a Shortest Remaining Time First (SRTF) policy in order to avoid light (interactive) jobs
being blocked by heavier (batch) jobs.

The life-cycle of a job in the system is the following:

1. Jobs arrive in the main queue Qm with a given timestamp. They are processed with
FIFO policy. When a job is processed, the scheduler generates a sampling job and
put this request in the sampling queue, with the same timestamp and a sampling
rate equal to s0, equal for all jobs.

2. If a job in Qm has parameters equals to that of a previously processed job, it is
directly inserted into the final queue Qf , with the same timestamp and a sampling
rate s = 1.

3. Jobs in Qs are processed FIFO. They are inserted in the queue of the host Qi where
the corresponding dataset is stored, with the same timestamp. A fixed amount of
time is assigned for the execution.

4. Every time a job leaves the scheduler and is inserted in one of the Qi, a global
execution plan is updated, that contains the busy times for every host in the system,
obtained by the cost model associated to every execution.

5. The queues Qi are populated by jobs with different sampling rates. A FIFO policy
is applied to such queues. When a job is executed, if its sampling rate is less than 1,
it will have an associated maximum execution time, assigned at step 3. After that
time, if the sampling job has actually finished, it is inserted in the Qf queue, with
sampling rate s = 1, and timestamp given by the current time. If it has not finished,
it is reinserted in the same Qi with a smaller sampling rate s, timestamp set to the
current time and a longer maximum execution time. This solution for scheduling
jobs of unknown duration was originally proposed in [44].

6. Every time a job has finished we update the global execution plan.

7. When sampling is successfully finished, jobs are inserted in Qf , where different pos-
sibilities are evaluated and the best option selected. Jobs in Qf are processed in an
SRFT fashion. Each job has an associated duration, obtained from the execution of
sampling. Notice that sampling was preformed on the host where the dataset was
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stored, while for the final execution we also consider the possibility of transferring
the dataset to a more convenient location. Using (4.8) we are however able to predict
job duration on a different machine.

All the procedure we have described relies on the fact that we can somehow control
actual job duration, either with sampling, or with maximum allowed time for executions.

4.3.8 Evaluation

We designed a simulation framework to evaluate our MCT on-line scheduler, which exploits
sampling as a technique for performance prediction. We thus compared our MCT+sampling
approach with a blind mapping strategy. Since the blind strategy is unaware of actual exe-
cution costs, it can only try to minimize data transfer costs, and thus always maps the tasks
on the machines that hold the corresponding input datasets. Moreover, it can not evaluate
the profitability of parallel execution, so that sequential implementations are always pre-
ferred. Referring to the architectures for DDM systems proposed in Section 4.1.2, here we
are comparing the performance of an architecture-driven scheduler (MCT+sampling) with
those of a data-driven one (blind). As anticipated in Section 4.1.2, the simple data-driven
model turns out to be less effective in scheduling both communications and computations
of DDM on the K-Grid.

The simulated environment is similar to an actual Grid environment we have at disposal,
and is composed of two clusters of three machines. Each cluster is interconnected by a
switched fast Ethernet, while a slow WAN interconnection exists between the two clusters.
The two clusters are homogeneous, but the machines of one cluster are two times faster than
the machines of the other one. To fix simulation parameters, we actually measured average
bandwidths bWAN (100KB/s) and bLAN (100MB/s) of the WAN and LAN interconnections,
respectively.

We assumed that DM tasks to be scheduled arrive in a burst, according to an expo-
nential distribution. They have random execution costs, but the x% of them corresponds
to expensive tasks (1000 sec. as mean sequential execution time on the slowest machine),
while the (100− x)% of them are cheap tasks (50 sec. as mean sequential execution time
on the slowest machine). Datasets Di are all of medium size (50MB), and are randomly
located on the machines belonging to the two clusters.

In these first simulation tests, we essentially checked the feasibility of our approach
before actually implementing it within the K-Grid. Our goal was thus to evaluate mapping
quality, in terms of makespan, of an optimal on-line MCT+sampling technique. We also
assumed to also know in advance (through an oracle) the exact cost of the sampled tasks,
instead of assuming an arbitrary small constant. In this way, since our MCT+sampling
technique works in an optimal way, we can evaluate the maximal improvement of our
technique over the blind scheduling one.

We analyzed the effectiveness of a centralized on-line mapper based on the MCT (Min-
imum Completion Time) heuristics [58, 87], which schedules DM tasks on a small organi-
zation of a K-Grid. The mapper does not consider node multitasking, is responsible for
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Figure 4.16: Comparison of makespans observed for different percentages of expensive
tasks, when either a blind heuristics or our MCT+sampling one is adopted.

scheduling both dataset transfers and computations involved in the execution of a given
task ti, and also is informed about their completions. The MCT mapping heuristics adopted
is very simple. Each time a task ti is submitted, the mapper evaluates the expected ready
time of each machine and communication links. The expected ready time is an estimate of
the ready time, the earliest time a given resource is ready after the completion of the jobs
previously assigned to it. On the basis of the expected ready times, our mapper evaluates
all possible assignment of ti, and chooses the one that reduces the completion time of the
task. Note that such estimate is based on both estimated and actual execution times of all
the tasks that have been assigned to the resource in the past. To update resource ready
times, when data transfers or computations involved in the execution of ti complete, a
report is sent to the mapper.

Note that any MCT mapper can take correct scheduling decisions only if the expected
execution time of a task is known. When no performance prediction is available for ti, our
mapper first generates and schedules t̂i, i.e. the task ti executed on the sampled dataset
D̂i. Unfortunately, the expected execution time of sampled task t̂i is unknown, so that the
mapper has to assume that it is equal to a given small constant. Since our MCT mapper can
not be able to optimize the assignment of t̂i, it simply assigns t̂i to the machine that hosts
the corresponding input dataset, so that no data transfers are involved in the execution
of t̂i. When t̂i completes, the mapper is informed about its execution time. On the basis
of this knowledge, it can predict the performance of the actual task ti, and optimize its
subsequent mapping and scheduling.

Figures 4.17 illustrate two pairs of Gannt charts, which show the busy times of the
six machines of our Grid testbed when tasks of different weights are submitted. In par-
ticular, each pair of charts is relative to two simulations, when either the blind or the
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Figure 4.17: Gannt charts showing the busy times (in time units of 100 sec.) of our six
machines when either the 10% (a,b) or the 60% (c,d) of the tasks are expensive: (a,b)
blind scheduling heuristics, (c,d) MCT+sampling scheduling heuristics.

MCT+sampling strategy is adopted. Machine i of cluster j is indicated with the label i[j].
Note that when the blind scheduling strategy is adopted, since cluster 0 is slower than
the other and no datasets are moved, the makespan on the slower machines results higher.
Note that our MCT+sampling strategy sensibly outperforms the blind one, although it
introduces higher computational costs due to the sampling process. Finally, Figure 4.16
shows the improvements in makespans obtained by our technique over the blind one when
the percentage of heavy tasks is varied.
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Chapter 5

Data Mining Template Library

In this Chapter we describe the Data Mining Template Library, a toolkit for the devel-
opment of DM algorithms and applications, designed and implemented at the Rensselaer
Polytechnic Institute, Troy, (NY) USA. The project is lead by professor M. J. Zaki. We
took part to the design and first implementation of DMTL, during 2003 fall. We describe
here the main ideas behind this projects and a preliminary implementation of the toolkit.

5.1 Introduction

The important results achieved in solving specific components of the complex process of
extracting knowledge from massive datasets, often need to be harmonized into a more
general framework that allows to fully exploit their potential. Since the Association Rule
Mining (ARM) problem was first introduced, the cost of the most expensive phase of
ARM has been reduced of orders of magnitude. At the same time, the notion of frequent
pattern has been extended to other type of data like time ordered sequences, or trees and
graphs. Also other kind of patterns are found to be more expressive for different application
domains: so called maximal and closed patterns provide a more synthetic representation
of interesting correlation inside data, that sometimes result to be more effective than
traditional itemsets.

There is a need for tools and systems that bring together all such algorithms and
techniques, allowing on one side for an easier deployment of applications based on such
results, and on the other side for the development of new algorithms that could possibly
improve current state of the art.

Our goal here is to develop a systematic solution to a whole class of common data
mining tasks in massive, diverse, and complex datasets, rather than to focus on a specific
problem. We are developing a prototype large-scale frequent pattern mining (FPM) toolkit,
which is: i) Extensible and modular for ease of use and customization to needs of analysts,
ii) Scalable and high-performance for rapid response on massive datasets.

The FPM toolkit is customizable to allow experts to build new, custom mining primi-
tives and algorithms, as well as plug-and-play, following a generic programming paradigm [9]

83
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for software development. The common generic core of FPM are built upon highly efficient
“primitives” or building-blocks for: mining (search over complex high-dimensional spaces),
pre-processing (sampling, discretization, feature selection, etc.), and post-processing (rule
pruning, non-redundancy, interestingness, visualization).

The Data Mining Template Library (DMTL) forms the core of FPM toolkit. DMTL
consists of a library of generic containers and algorithms, as well as persistency management
for various FPM tasks. We describe the design and implementation of the FPM prototype
for an important subset of FPM tasks, namely mining frequent itemsets and sequences.
Our main contributions are as follows:

• The design and implementation of generic data structures and algorithms to handle
itemset and sequence patterns.

• Design and Implementation of generic data mining algorithms for FPM, such as
depth-first and breadth-first search.

• DMTL’s persistent/out-of-core structures for supporting efficient pattern frequency/statistics
computations using a tightly coupled database management systems (DBMS) ap-
proach.

• Native support for both a vertical and horizontal database format for highly efficient
data mining.

• DMTL’s support for pre-processing steps like data mapping and discretization of
continuous attributes and creation of taxonomies. etc.

5.2 Related Work

The current practice in frequent pattern mining basically falls into the paradigm of in-
cremental algorithm improvement and solutions to very specific problems. While there
exist tools like MLC++ [53], which provides a collection of algorithms for classification,
and Weka [99], which is a general purpose java library of different data mining algorithms
including itemset mining, classification and clustering, as well as other commercial prod-
ucts, there is no unifying theme or framework, there is little database support, scalability
is questionable, and there is little support for KDD process. Moreover, these tools are not
designed for handling complex pattern types like trees and graphs.

Previous research in integrating mining and databases has mainly looked at SQL sup-
port. DMQL [41] is a mining query language to support common mining tasks. MSQL [45]
is an extension of SQL to generate and selectively retrieve sets of rules from a large
database. The MINE RULE SQL operator [62] and Query flocks [95] extend the semantics
of association rules, allowing more generalized queries to be performed. A comprehensive
study of several architectural alternatives for database and mining integration were studied
in [83]. This body of work is complementary to ours, since these SQL operators can be
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used as a front end to the FPM toolkit. Also, our toolkit is optimized for the class of
frequent patterns.
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Figure 5.1: Data Formats for Sequences: horizontal (left) and vertical (right)

5.3 Problem definition

We defined in Section 2.1 the problem of finding frequent itemsets in a database, where
itemsets are collections of items which on turn are a rather generic representation for almost
any kind of data type. The notion of pattern can be generalized even further in order to
cover other kinds of patterns besides itemsets, like sequences or trees. The input of an FPM
algorithm is a generic database D where a collection of objects D = {o1, o2, ...on} is stored.
Each object oi is a collection of elements from a finite set I. If the database represents
sales data from a supermarket, I represents the set of items sold in the supermarket. If the
database represents a relational table then the set I represents all the attribute-value pairs
in the table. Finally, if the database represents a web access log file, then the objects are
navigation sessions and elements in the object are timestamped sequences of html pages.
More complex data structure can be represented in D, like trees or graphs.

5.3.1 Database Format

Most of the previous FPM work has utilized horizontal database format for storing the
objects. However, as we mentioned in Section 2.4, vertical formats are in general more
efficient for itemset mining [69, 103, 86, 23, 106, 47, 18], sequence mining [104, 10, 70] and
tree mining [108]. In a vertical database each label is associated with its corresponding oid
list, the set of all oids (object identifiers) where it appears, along with additional pattern
specific information, like timestamp for sequences. Oid lists are therefore an extension of
tidlists for itemset mining. As in our algorithm DCI, bitvectors can be used to have a more
compact representation of oid lists [69, 86, 18, 10].

Similarly to the case of itemset transactions (see Figure 2.1), Figure 5.1 contrasts the
horizontal and vertical data formats for sequence mining. In the horizontal approach, each
object has an oid along with the sequence of itemsets comprising the object. Thus object
with oid = 1 is the sequence (a, c) at time t1 and (e, h, w) at time t2 . In contrast, the
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vertical format maintains for each label (and itemset) its oid list, a set of all oids where
it occurs and the corresponding timestamps. For example, label a appears in oids 1, 3, 4,
and 5.

Mining algorithms using the vertical format have shown to be very effective and usually
outperform horizontal approaches [103, 86, 104, 10, 108]. The reason is that the vertical
format narrows down the data accessed to only the relevant subset, allows one to mine
frequent patterns via specialized intersection operations on the vertical oid-lists, and sup-
ports a variety of search strategies. For example, for itemset mining, to find if {a, d} is
frequent we intersect oid lists of a and d. As already commented, the drawback of this
approach is related to the number of intersections that is necessary to perform to calculate
the support of long itemsets. Specific optimizations are needed in order to reduce the
number of intersections. On the other hand, for all those methods relying on intersection
operations, such optimizations turn out to be effective, thus allowing for performance gain
in a whole class of algorithms.

When short patterns are mined, the horizontal format allows to achieve better perfor-
mance. In fact, during the first steps of FPM algorithms oid lists can still be too long to
be performed in core. For this reason DCI adopts a hybrid approach, horizontal on the first
steps and vertical as soon as the pruned vertical dataset fits into main memory.

Our DMTL implementation thus provides native database support for both horizontal
and vertical object formats.

5.4 Containers and Algorithms

Following the ideology of generic programming, DMTL provides a standardized, general,
and efficient implementation of frequent pattern mining tasks by isolating the concept of
data structures or containers, as they are called in generic programming, from algorithms.
DMTL provides container classes for representing different patterns (such as itemsets and
sequences) and collection of patterns, containers for database objects (horizontal and ver-
tical), and containers for temporary mining results (such as new oid-lists produced via
intersections). These container classes support persistency when required. Functions spe-
cific to the containers are included as member functions. Generic algorithms, on the other
hand are independent of the container and can be applied on any valid container. These
include algorithms for performing intersections of the vertical oid-lists for itemsets or se-
quences or other patterns. Generic algorithms are also provided for mining itemsets and
sequences (such as Apriori/GSP [4, 91], Eclat/SPADE [103, 104]), as well as for finding
the maximal or closed patterns in a group of patterns. Finally DMTL provides support
for the database management functionality, pre-processing support for mapping data in
different formats to DMTL’s native formats, as well as for data transformation (such as
discretization of continuous values).

In this section we focus on the containers and algorithms for mining. In later sections
we discuss the database support in DMTL as well as support for pre-processing and post-
processing.
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Figure 5.2: DMTL Container Hierarchy

5.4.1 Containers: Pattern and PatternFamily

Figure 5.2 shows the different DMTL container classes and the relationship among them.
At the lowest level set the different kinds of pattern-types one might be interested in mining
(such as itemsets, sequences, and several variants). A pattern uses the base pattern-type
classes to provide a generic container. There are several pattern family types (such as
pvector, plist, etc.) which together with a persistency manager class make up different
pattern family classes. More details on each class appears below.

Pattern. In DMTL a pattern is a generic container, which can be instantiated as an
itemset, sequence, tree or a graph, specified by means of a template argument called
pattern-type (P); A snippet of the generic pattern class is shown in Figure 5.3.

A generic pattern is simply a pattern-type whose frequency we need to determine in
a larger collection or database of patterns of the same type. A pattern container has
as data members the pattern-type and support, and functions like serialize read, and
serialize write (to read/write the pattern from/to some stream). It also contains op-
erations to check for equality (==, !=) and to check if another pattern is a sub-pattern
(includes()). All DMTL classes use the dmtl namespace to avoid naming conflicts with
other libraries (we will omit the dmtl namespace from now on, it is assumed by default).

Pattern Type. This allows users to select the type of pattern they want to mine, and as
long as certain operations are defined on the pattern-type all the generic algorithms pro-
vided by DMTL can be used. A snippet of the Itemset pattern-type is shown in Figure 5.4.

Typically, an itemset is represented by pattern-type vector<int>, denoting a set of
items (int in this case), The pattern-type class must in addition provide certain operations
required by the generic Pattern class. The operations in the Pattern class are all defined
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namespace dmtl{
//Pattern-type P
template <class P> class Pattern{
public:

void set support(int sup);
int get support();
P & get pattern();
void set pattern(P & p);
//Read/Write pattern from/to a stream
void serialize read(istream & S); 10

void serialize write(ostream & S);
//Check if p is sub-pattern
bool includes(Pattern<P> &p);
//Pattern equality, assignment
bool operator== (Pattern<P> &p);
bool operator!= (Pattern<P> &p);
Pattern<P> & operator= (Pattern<P> &p);

private:
int support;
P pattern; 20

}
} //namespace dmtl

Figure 5.3: Generic Pattern Class

in terms of the corresponding operations in the specific pattern-type class. For instance
the includes() function of Pattern may be defined as follows:

//Check if p is sub-pattern

bool includes(Pattern<P> &p){
return pattern.includes(p.get pattern());

}

The sequence pattern-type is defined as list<vector<int>>, denoting an ordered
list of itemsets. This is achieved by defining the pattern-type as follows:

class Sequence{
typedef typename
list<vector<int>> pattern-type;

//Other functions

}

The rest of the function prototypes remains the same as in Itemset class, but a se-
quence pattern-type must provide specific implementations of the different operations.
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class Itemset{
public:

//Definition of Itemset
typedef typename vector<int> pattern type;
//Is p a sub-pattern?
bool includes (pattern type & p);
bool operator== (pattern type &p);
bool operator!= (pattern type &p);
pattern type & operator= (pattern type &p);

private: 10

pattern type P; //The itemset
}

Figure 5.4: Itemset Pattern Type

For instance the includes() function will be defined differently for itemset and sequence
pattern-types. The main source of flexibility is that developers can easily define new types
of patterns to suit their needs and once the operations are defined on them all the generic
algorithms of DMTL can be used on the new pattern types. For instance suppose we want
to include a time field along with the different itemsets in a sequence, we can define a new
sequence type as follows:

class Sequence2{
typedef typename
list<pair<time, vector<int>>>

pattern-type;

//Other functions

}

Here we have a sequence that is a list of (time,vector<int>) pairs, where time is a
user-defined type to note when each event occurs.

Pattern Family. In addition to the basic pattern classes, most FPM algorithms oper-
ate on a collection of patterns. The generic class PatternFamily provides methods that
manipulate a group of patterns of the same type. A snippet of the pattern family class is
shown here:

//Pattern Family Type PatFamType, Database DB
template <class PatFamType> class PatternFamily{

public:
//Type of Pattern Family
typedef typename PatFamType pat fam type;
//Type of Pattern
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typedef typename PatFamType::pattern pattern;

typedef typename PatFamType::iterator iterator;
10

//Add/Remove pattern to/from family
void add(pattern & p);

void remove(pattern &p);

//Read/Write patterns from/to stream
void serialize read(stream & S);

void serialize write (stream & S);

//Find maximal/closed patterns in family
PatternFamily & maximal();
PatternFamily & closed();

// Find all subsets of p 20

PatternFamily & lower shadow(pattern & p);

//Find all supersets of p
PatternFamily & upper shadow(pattern & p);

//Count support of all patterns
void count(DB &db);

private:
PatFamType PatFam; //Pattern Family

}

The pattern family is a generic container to store groups of patterns, specified by the
template parameter PatFamType. PatFamType represents some persistent class provided by
DMTL, that provides seamless access to the members, whether they be in memory or on
disk. All access to patterns of a family is through the iterator provided by the PatFamType
class. PatternFamily provides generic operations to add and remove patterns to/from the
family, to serialize the whole family to/from a stream (such as a file/screen), to find the
maximal or closed patterns in the family, and to find the set of all matching super-patterns
(called upper-shadow) and sub-patterns (called lower-shadow) of a given pattern, within
the family. Finally, the count() function finds the support of all patterns, in the database,
using functions provided by the DB class.

Pattern Family Type. DMTL provides several persistent classes to store groups of
patterns. Each such class is templatized on the pattern-type and a persistency manager
class PM. An example is the pvector class shown below:

//Pattern P, Persistency Manager PM

template <class P, class PM>

class pvector{
typedef typename P pattern;

typedef typename PM persistency-manager;

//Functions for persistency

}
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pvector is a persistent vector class. It has the same semantics as a STL vector with
added memory management and persistency. Thus a pattern family for itemsets can be de-
fined in terms of the pvector class as follows: PatternFamily<pvector<Itemset, PM>>.
Another class is plist<P,PM>.

5.4.2 Persistency and Database Class

An important aspect of DMTL is to provide a user-specified level of persistency for all
DMTL classes. To support large-scale data mining, DMTL provides automatic support for
out-of-core computations, i.e., memory buffer management, via the persistency manager
class PM. The PatternFamilyType class uses the persistency manager (PM) to support
the buffer management for patterns. The details of implementation are hidden from Pat-
ternFamily; all generic algorithms continue to work regardless of whether the family is
(partially) in memory or on disk. The implementation of a persistent container (like pvec-
tor) is similar to the implementation of a volatile container (like STL vector); the difference
being that instead of pointers one has to use offsets and instead of allocating memory us-
ing new one has to request it from the persistency manager class. More details on the
persistency manager will be given later.

We saw above that PatternFamily uses the count() function to find the support of
all patterns in the family, in the database; at the end of count() all patterns have their
support field set to their frequency in the database. DMTL provides native support for
both the horizontal and vertical database formats. The generic count() algorithm does
not impose any restriction on the type of database used, i.e., whether it is horizontal or
vertical. The count() function uses the interface provided by the DB class, passed as
a parameter to count(), to get pattern supports. More details on the DB class and its
functions will be given later.

5.4.3 Generic FPM Algorithms

The FPM task can be viewed as a search over the pattern space looking for those patterns
that match the minimum support constraint. As we said in Chapter 2, in itemset mining,
the search space is the set of all possible subsets of I. If |I| = m the search space can be
as big as 2m. For sequence mining, the search space is the set of all possible sub-sequences
formed from I. For m items, there are O(mk) sequences of length up to k [104]. Various
search strategies are possible leading to several popular variants of the mining algorithms.
DMTL provides generic algorithms encapsulating these search strategies; by their definition
these algorithms can work on any type of pattern: Itemset, Sequence, Tree or Graph.

In the intermediate steps of mining most algorithms several candidate patterns are eval-
uated, and only the ones that satisfy the support threshold are kept for further processing.
FPM algorithms can differ in the way new candidates are generated. The dominant ap-
proach is that of complete search, whereby we are guaranteed to generate and test all
frequent patterns. Note that completeness doesn’t mean exhaustive, since we can use
pruning to eliminate useless branches in the search space. Heuristic generation sacrifices
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completeness for the sake of speed. At each step, it only examines a limited number of
“good” branches. Random search to locate the maximal frequent patterns is also possible.
Typical methods that can be used here include genetic algorithms, simulated annealing,
and so on, but these methods have not received much attention in FPM literature, since
a lot of emphasis has been placed on completeness. Likewise, DMTL provides several
complete search schemes over the pattern space.

Breadth-first and Depth-first Search. Most approaches have used a breadth-first
(BFS, also called bottom-up or level-wise) search to enumerate the frequent patterns. This
approach is adopted for example by the DCI algorithm (see Section 2.4). It starts with
the single elements in I, and counts their support. It then finds those that are frequent,
denoted F1, and constructs candidate patterns of size 2, denoted C2 by extending the
size 1 patterns by adding a new element from I. All patterns in C2 are counted in the
database, and the frequent ones are found, denoted by F2. At any given intermediate stage
k, candidate patterns of size k, Ck, are constructed by extending the frequent patterns of
size k−1 by one more element from I, and these candidates are counted in the database to
yield the frequent patterns of size k, denoted Fk. The process stops when no new frequent
patterns are found.

Recent approaches have used the depth-first (DFS) enumeration scheme. Here instead
of counting the entire level Ck at a time, only a select subset of candidate patterns are
counted and extended an element at a time until no extensions are possible. After that
one returns to the remaining groups of patterns within level k. The process repeats until
all extensions of every single element in I have been counted. DMTL provides support for
both breadth-first and depth-first search for frequent patterns.

Grouping Patterns: Equivalence Classes. While performing BFS or DFS it is ben-
eficial to first order the patterns into groups, a common strategy being grouping by the
common prefix, giving rise to prefix-based equivalence classes [103, 104]. The idea then is
to mine over classes, rather than individual patterns, i.e., a class represents elements that
the prefix can be extended with to obtain a new frequent pattern, and no extension of an
infrequent prefix has to be examined. DMTL supports such grouping through the means
of a generic group iterator class, that puts all patterns satisfying a given condition (e.g.,
having same prefix), into the same class.

Mining Algorithms There are two main steps for mining frequent patterns: to generate
candidates to be counted and to count the support in the database. DMTL provides several
generic algorithms for mining all patterns. One approach uses BFS to explore the search
space. The algorithm is completely generic in that it can work for any pattern provided
certain conditions are met. For instance, a snippet of the code might look like:

template <class PatFamType>

void BFS-Mine (PatternFamily<PatFamType> &pf,

DB &db, ...) {
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typedef typename
PatFamType::pattern-type P;

typedef typename
PatFamType::persistency-manager PM;

....

}

The generic BFS mining algorithm takes in a pattern family and the database. The
types of patterns and persistency manager are specified by the pattern family type. The
BFS algorithm in turn relies on other generic subroutines for creating groupings, for gener-
ating candidates, and for support counting. For instance different grouping functions can
be defined in the PatternFamily class, e.g., prefix group. The prefix grouping class will use
other methods provided by the pattern/pattern-type class to check if two patterns have
the same prefix and if so will group them into the same class. The BFS algorithm also
needs to extend candidate patterns by adding another element. Once again generic sub-
routines provided by the pattern family can be used to extend the patterns to create new
candidates. They in turn will rely on the method provided by pattern/pattern-type class
to extend a given pattern. When BFS-Mine is invoked the user must supply the pattern
family type, the database and other parameters like the grouping strategy and extension
strategy. For counting a candidate collection the functions provided by the database class
can be used. The generic DFS mining algorithm, DFS-Mine, is similar to BFS-Mine in all
respects except that it makes a recursive call to itself to process the patterns in a DFS
manner.

The generic BFS-Mine algorithm, when used in conjunction with a horizontal database
and no grouping is exactly the same as the classic Apriori algorithm [4] for Itemset patterns,
and is the same as GSP [91] for Sequence patterns. When BFS/DFS-Mine are used with a
vertical database and prefix-based grouping, they give rise to Eclat [103] for itemsets and
SPADE [104] for sequences.

5.5 Persistency/Database Support

In this section we discuss the database and persistency support provided in DMTL. As
we mentioned earlier DMTL provides native database support for both the horizontal and
vertical data formats. It is also worth noting that since in many cases the database contains
the same kind of objects as the patterns to be extracted (i.e., the database can be viewed
as a pattern family), the same database functionality used for horizontal format can be
used for providing persistency for pattern families.

It is relatively straightforward to store a horizontal format object, and by extension, a
family of such patterns, in any object-relational database. Thus the persistency manager
for pattern families can handle both the original database and the patterns that are gener-
ated while mining. DMTL provides the required buffer management so that the algorithms
continue to work regardless of whether the database/patterns are in memory or on disk.
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//vat-type V
template <class V> class VAT{

public:
typedef typename V vat type;
//add/remove entry to/from \vat\
void add (vat type & vbt);
void remove (vat type & vbt);

private:
vector<vat type> vat body; 10

}

Figure 5.5: VAT class

More details will be discussed later.
To provide native database support for objects in the vertical format, DMTL adopts

a fine grained data model, where records are stored as Vertical Attribute Tables (VATs).
Given a database of objects, where each object is characterized by a set of properties or
attributes, a VAT is essentially the collection of objects that share the same values for
the attributes. For example, for a relational table, cars, with the two attributes, color
and brand, a VAT for the property color=red stores all the transaction identifiers of cars
whose color is red. The main advantage of VATs is that they allow for optimizations
of query intensive applications like data mining where only a subset of the attributes
need to be processed during each query. As was mentioned earlier these kinds of vertical
representations have proved to be useful in many data mining tasks [103, 104, 108]. We
next introduce the VAT data model focusing on itemset and sequences; extending the
model to handle patterns like trees and graphs is part of future work.

5.5.1 Vertical Attribute Tables

We consider a pattern to be composed of a collection of attribute-value (AV) pairs, with
additional constraints as necessary. For instance an itemset is simply a set of AV pairs
(e.g., {color=red, brand=ford} could be an itemset of length 2). A sequence on the
other hand specifies a temporal ordering on the AV pairs.

In DMTL there is typically one VAT per pattern. A VAT is an entity composed of
a body, which contains the list of object identifiers in which a given pattern occurs. For
storing database sequences a VAT needs, in addition, a time field for each occurrence of
the pattern. VATs are first created per unique AV pair (patterns of length 1) and later
on in the mining, per itemset/sequence pattern made up of a collection of AV pairs. The
class definition of a VAT is shown in Figure 5.5.

Depending on the pattern type being mined the vat-type class may be different. For
instance for itemset mining it suffices to keep only the object identifiers where a given
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itemset appears. In this case the vat-type is simply an int (assuming that oid is an
integer). On the other hand for sequence mining one needs not only the oid, but also
the time stamp for the last AV pair in the sequence. For sequences the vat-type is then
pair<int, time>, i.e., a pair of an int, denoting the oid, a nd time, denoting the time-
stamp. Different vat-types must also provide operations like equality testing (for itemsets
and sequences), and less-than testing (for sequences; a oid-time pair is less then another if
they have the same oid, and the first one happens before the second).

Given the generic setup of a VAT, DMTL defines another generic algorithm to join/intersect
two VATs. For instance in vertical itemset mining, the support for an itemset is found by
intersection the VATs of its lexicographic first two subsets. A generic intersection opera-
tion utilizes the equality operation defined on the vat-type to find the intersection of any
two VATs. On the other hand in vertical sequence mining the support of a new candi-
date sequence is found by a temporal join on the VATs, which in turn uses the less-than
operator defined by the vat-type. Since the itemset vat-type typically will not provide a
less-than operator, if the DMTL developer tries to use temporal intersection on itemset
vat-type it will generate a compile time error! This kind of concept-checking support pro-
vided by DMTL is extremely useful in catching library misuses at compile-time rather than
at run-time.

DMTL provides support for creating VATs during the mining process, i.e., during
algorithms execution, as well as support for updating VATs (add and delete operations).
In DMTL VATs can be either persistent or non-persistent. Finally DMTL uses indexes
for a collection of VATs for efficient retrieval based on a given attribute-value, or a given
pattern.

VAT Creation

We consider the following three basic data models for itemset and sequence mining: rela-
tional tables, transactions and sequences. Many FPM algorithms run on these three types
of databases. We show how VATs can be defined for each of them and effectively used for
the execution of FPM algorithms.

Relational Tables to VATs In a relational table columns are different attributes, each
one with its own domain of possible values. Rows are objects with given values for each
attribute. For each AV pair (attribute=A, value=V), we have a VAT which holds the
collection of object identifiers where A=V. Figure 5.6 shows an example of the VATs obtained
from a relational table.

It is clear that in general the number of VATs associated with a table will be as big as
the number of all possible combinations (attribute, value). Nevertheless, information
stored in the collection of VATs corresponding to a given relational table is the same (there
is no redundancy).

Transactions to VATs Transactions are variable length subsets of elements/items taken
from a given set I. They can also be represented as rows in a relational table where columns
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ID COLOR MAKE

1

3 red fiat
2 alfa

0 red fiat
green alfa
blue

3

0

COLOR=red

0

3

COLOR=green

1

MAKE=fiat COLOR=blue

2

2

1

MAKE=alfa

VATs

Figure 5.6: Mapping relations onto VATs.
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3

0
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3

1
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1
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0

0

2

item=a
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3

Figure 5.7: Mapping transactions onto VATs.

are items in I and each column contains a 1 (item is present in the transaction) or 0 (item
is not present in the transaction). In this case, a VAT stores the set of object identifiers
(transaction ids) where each item appears. Figure 5.7 shows the mapping from transaction
to VATs, which corresponds to the vertical representation shown earlier in Figure 5.1.

item=b

1, t3

3, t3

item=d

0, t6

2, t4

item=c

2, t2

0, t3

3, t1

0, t1

item=a

1

3
2

0 (a,t1),(c,t3),(d,t6)
(b,t3)

(a,t1),(b,t3)
(c,t2),(d,t4),(e,t6)

Sequences

item=e

3, t6

VATs

Figure 5.8: Mapping sequences onto VATs.

Sequences to VATs Sequences are transactions, called sessions, where each item, called
an event, is associated with a timestamp that tells when the event happened. In this case
we still have a VAT for each possible event, but for every object identifier we also store the
corresponding timestamp, as shown in Figure 5.8.

It is important to observe that at this level we do not impose any restriction on the
data type of attributes, items, or events. They can very generally be integers, categories
or floating point real numbers.
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5.5.2 Database/Persistency-Manager Classes

The database support for VATs and for the horizontal family of patterns is provided by
DMTL in terms of the following classes, which are illustrated in Figure 5.9.
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Get_Vat_Body()

Storage<PM> Storage<PM>

Figure 5.9: High level overview of the different classes used for Persistency

Vat-type: A class describing the vat-type that composes the body of a VAT, for instance
int for itemsets and pair<int,time> for sequences.

VAT<class V>: The class that represents VATs. This class is composed of a collection of
records of vat-type V.

Storage<class PM>: The generic persistency-manager class that implements the physi-
cal persistency for VATs and other classes. The class PM provides the actual imple-
mentations of the generic operations required by Storage. For example, PM metakit
and PM gigabase are two actual implementations of the Storage class in terms of
different DBMS like Metakit [98], a persistent C++ library that natively supports
the vertical format, and Gigabase [52], an object-relational database.

MetaTable<class V, class PM>: This class represents a collection of VATs. It stores a
list of VAT pointers and the adequate data structures to handle efficient search for
a specific VAT in the collection. It also provides physical storage for VATs. It is
templatized on the vat-type V and on the Storage implementation PM.

DB<class V, class PM>: The database class which holds a collection of Metatables.
This is the main user interface to VATs and constitutes the database class DB re-
ferred to in previous sections. It supports VAT operations such as intersection, as
well as the operations for data import and export. The double template follows the
same format as that of the Metatable class.

Buffer<class V>: A fixed-size main-memory buffer to which VATs are written and from
which VATs are accessed, used for buffer management to provide seamless support
for main-memory and out-of-core VATs (of type V).
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As previously stated, the DB class is the main DMTL interface to VATs and the persis-
tency manager for patterns. It has as data members an object of type Buffer<V> and a
collection of MetaTables<V,PM>.

The Buffer<V> class is composed of a fixed size buffer which will contain as many
VAT bodies. When a VAT body is requested from the DB class, the buffer is searched
first. If the body is not already present there, it is retrieved from disk, by accessing the
Metatable containing the requested VAT. If there is not enough space to store the new
VAT in the buffer, the buffer manager will (transparently) replace an existing VAT with
the new one. A similar interface is used to provide access to patterns in a persistent family
or the horizontal database.

The MetaTable class stores all the pointers to the different VAT objects. It provides the
mapping between the patterns, called header, and their VATs, called the body, via a hashed
based indexing scheme. In the figure the H refers to a pattern and B its corresponding
VAT. The Storage class provides for efficient lookup of a particular VAT object given the
header.

VAT Persistency VATs can be in one of three possible states of persistence:

• volatile: the VAT is fully loaded and available in main memory only.

• buffered: the VAT is handled as if it were in main memory, but it is actually kept on
disk in an out-of-core fashion.

• persistent: the VAT is disk resident and can be retrieved after the program execution,
i.e.: the VAT is inserted in the VAT database.

Volatile VATs are created and handled by directly accessing the VAT class members.
Buffered VATs are managed from the DB class through Buffer functions. Buffered VATs
must be inserted into the file associated with a Metatable, but when a buffered VAT is
no longer needed, its space on disk can be freed. A method for removing a VAT from disk
is provided in the DB class. If such method is not called, then the VAT will be persistent,
i.e., it will remain in the metatable and in the storage associated with it after execution.

Buffer Management The Buffer class provides methods to access and to manage a
fixed size buffer where the most recently used VATs/patterns are stored for fast retrieval.
The idea behind the buffer management implemented in the Buffer class is as follows.

A fixed size buffer is available as a linear block of memory of objects of type V (Figure
5.10). Records are inserted and retrieved from the buffer as linear chunks of memory.
To start, the buffer is empty. When a new object is inserted, some data structures are
initialized in order to keep track of where every object is placed so it can be accessed
later. Objects are inserted one after the other in a round-robin fashion. When there is no
more space left in the buffer, the least recently used (LRU) block (corresponding to one
entire VAT body, or a pattern) is removed. While the current implementation provides a
LRU buffering strategy, as part of future work we will consider more sophisticated buffer
replacement strategies that closely tie with the mining.
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Figure 5.10: Buffer Management: The buffer manager keeps track of the current position
in the buffer (curr), the amount of free space (free), and an index to keeps track of where
an object is. As new objects are inserted these are updated and when an existing object
is replaced when the buffer becomes full.

Storage Physical storage of VATs and pattern families can be implemented using differ-
ent storage systems, such as a DBMS or ad-hoc libraries. In order to abstract the details
of the actual system used, all storage-related operations are provided in a generic class,
Storage. Implementations of the Storage class for MetaKit [98] and Gigabase [52] back-
ends are provided in the DMTL. Other implementations can easily be added as long as
they provide the required functionality.

The DB class is a doubly templated class where both the vat-type and the storage
implementation need to be specified. An example instantiation of a DB class for itemset
patterns would therefore be DB<int,PM metakit> or DB<int,PM gigabase>.

5.6 Pre-processing Support

We described in the previous sections how traditional data models - namely tables, trans-
actions and sequences - can be mapped to VATs. Now we show how the actual data are
encoded into VATs. Since our data can be of any type (discrete, continuous, categorical
or even of more complex types), we use an internal representation of VATs for efficient
mining. Moreover, the same source data can be treated differently according to the partic-
ular analysis we might want to perform. For example, starting from the same database of,
say, continuous values, we might want to run some FPM algorithms that relies on one dis-
cretization of the continuous values, but after that we may want to run another algorithm
for a different discretization.

DMTL provides support for dynamic mapping of data into VATs at run-time over
the same base database using a mapping class, which transforms original attribute values
into mapped values according to a set of user specified mapping directives, contained in a
configuration file. For every input database there has to be an XML configuration file. For
the definition of the syntax of such file, we follow the approach presented in [60] by Talia



100 CHAPTER 5. DATA MINING TEMPLATE LIBRARY

et al.. The format of such file is the following.

<?xml version="1.0"?>

<!DOCTYPE Datasource SYSTEM "dmtl config.dtd">

<Data model=relational source=ascii file>

<Access> [...] </Access>

<Structure>

<Format> [...] </Format>

<Attributes> [...] </Attributes>

</Structure>

</Data>

Attributes Configuration used for mapping attribute values are contained in the <Structure>
section. The <Format> section contains the characters used as record separator and field
separator. An <Attribute> section must be present for each attribute (or column) in
the input database. Such section might be something like: <Attribute name="price"

type="continuous" units="Euro" ignore="yes"> [ ... ] </Attribute>. Possible
attributes for the <Attribute> tag are: name: the name of the attribute, type: one of
continuous, discrete, categorical, units: the unit of measure for values (currency, weight,
etc.), ignore: should a VAT be created for this attribute or not.

Mapping The mapping information is enclosed in the <Mapping> section. Mapping can
be different for categorical, continuous or discrete fields. For continuous values we can
specify a fixed step discretization within a range:

<Attribute name="price" type="continuous">

<Mapping min="1.0" max="5.0" step=".5">0

</Mapping> </Attribute>

In this case the field price will be mapped to (max-min)/step = (5-1)/.5 = 10

values, labeled with integers starting from 0. It is also possible to specify non-uniform
discretizations, omitting the step attribute and explicitly specifying all the ranges and
labels:

<Attribute name="price" type="continuous">

<Mapping min="0.5" max="2.0">1</Mapping>

<Mapping min="2.0" max="20.0">2</Mapping>

<Mapping min="20.0" max="100.0">3</Mapping>

<Mapping min="100.0" max="-1">4</Mapping>

</Attribute>

For categorical values we can also specify a mapping, that allows for taxonomies or
other groupings. Below we are classifying items into higher order categories. For example,
turkey and chicken are both items of type meat.
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<Attribute name="item" type="categorical"

units="food category" ignore="yes">

<Mapping val="corona">beer</Mapping>

<Mapping val="adams">beer</Mapping>

<Mapping val="chianti">wine</Mapping>

<Mapping val="turkey">meat</Mapping>

<Mapping val="chicken">meat</Mapping>

</Attribute>

5.7 Experiments

DMTL is implemented using C++ Standard Template Library [9]. We present some ex-
perimental results on the time taken by DMTL to load a transactional database and to
perform itemset mining on it. We used the IBM synthetic database generator [4], to create
datasets (T10I4DxK) with transactions ranging from x=10K to x=1000K (or 1 million).
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Figure 5.11: Loading (a) and mining (b) times.

Figure 5.11 (a) shows the time taken to convert the transactional data into VATs, and
Figure 5.11 (b) shows the mining time for several values of the minimum support s. We
see that DMTL scales linearly with the number of transactions. While the time to convert
to the VAT format and to load it into PM metakit incurs some overhead, the mining time
of DMTL is as good as a flat file run.

5.8 Future work

We conclude this Chapter with a brief analysis of the possible extensions to the current
implementation of DMTL.



102 CHAPTER 5. DATA MINING TEMPLATE LIBRARY

5.8.1 Implementation of DCI into DMTL

In order to extend DMTL current set of built-in algorithms, we plan to insert our DCI
algorithm for FSC into the toolkit. Since DCI is based essentially on Apriori , with a set of
highly optimized strategies to be adopted according to dataset or hardware characteristics,
we believe that including DCI ideas into the toolkit will result in a more general benefit,
also on other components.

Currently the work of porting DCI is still in its early stage. We review here the main
points of this operation.

• First of all, DCI relies on a vertical bitmap based representation of the dataset.
DMTL already provides a native vertical dataset representation, based on VATs, but
at the moment VAT bodies, corresponding to tidlists, are implemented as vectors. It
would therefore be necessary to have a bitmap based implementation of VATs, where
the body of a VAT is a linear and contiguous chunk of memory. Using bitvectors can
lead to important performance improvements, since intersections can be performed
more efficiently using word level and operations. The impact of this on the current
version of DMTL should only be a different implementation of the VAT class.

• Another benefit coming from the use of bitvector VATs is that, if all length-k VATs
are allocated together, they can be stored in contiguous memory regions, thereby
allowing for high locality in their access which on turn would allow processor caching
strategies to be effective. Since itemsets are accessed according to their lexicographic
order, high locality is indeed exhibited in the process of itemsets enumeration. As
a first step, it would be enough to store all length-1 VATs in a contiguous buffer.
In this way we should obtain something similar to the bitmap representation of the
dataset used by the original implementation of DCI, as presented in Chapter 2.

• The multiple optimization strategies adopted by DCI, rely on the ability of skipping
sections of 0’s in the tidlists (per sparse datasets) and identical sections of tidlists (in
dense datasets). Moreover, for sparse dataset DCI adopts a pruning strategy accord-
ing to which empty columns (i.e. transactions) are skipped during intersections. In
DMTL this would reflect in the development of methods in the database class that
can tell whether a dataset is dense or sparse. This can be achieved with an inspection
of the bitmap representation of the dataset. Once this knowledge is available, the
optimizations for sparse and dense datasets could be implemented in the intersection
operations. Intersections could, as it is now the case in DCI, remember which are the
tidlists (i.e. bitmap VAT bodies) sections to be skipped.

• A more effective optimization at the intersection level is the use of a cache for storing
the partial results of a k−way intersection. We have demonstrated (Section 2.4.4)
how a small cache of size k − 2 times the size of a tidlist is enough to dramatically
reduce the number of actual intersections performed, due to the lexicographic order
with which candidates are enumerated.
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5.8.2 DMTL extensions

A set of possible extensions to DMTL, among others, can be enumerated as follows:

• FPM might involve more articluated constraints than the simple minimum support
threshold. For this reason the minimum support condition should be abstracted from
the several code framents where it is currently replicated and performed in a separate
method that could possibly implement other constraint as well.

• The XML configuration file could be easily extended to include sampling. In the
<format>...</format> section, for example, a <sampling> element could be in-
troduced, with proper attributes that specify the sampling rate and the sampling
strategy. Multiple sampling strategy could in fact be available.

• Although currently DMTL is designed mainly for a sequential hardware platform, its
general architecture allows for an easy extension. One possible architectural extention
could be achieved providing a distributed loosely coupled implementation of the
persistency manager class, using a client-server DBMS like Mysql or others. Such
implementation could be useful for the development of parallel and distributed FPM
algorithms.
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Chapter 6

Conclusions

The development in storage, network and computing technologies in last decade, has
brought us today a potentially endless amount of data. According to R. Grossman [35]
“Today a 10 GB data set can easily be produced with a simple mistake, 100 GB - 1 TB
data sets are common, and data sets larger than a Terabyte are becoming common”. On
the other hand, the corresponding technology aimed at extracting valuable and usable
knowledge from such data, not always has undergone a similar exponential development.
To state it with J. Han’s words “we are data rich but information poor” [42]. Filling such
knowledge-gap is the challenge that data miners are currently called to face.

Many research topics take part in the active discipline of DM. From new algorithms
to knowledge modeling, through the application of DM techniques to new and diverse
application domains. Common to all different fields of DM is the limitation posed by
performance issues. Input datasets can be, and in general are, huge so that algorithms
are required to scale reasonably to those dimensions. Datasets can be distributed. DM
applications must therefore be able to run in a similar environment, taking into account
all the consequent problems (how to move data? how to consider privacy constraints?).
Data have limited lifetime and change continuously. DM applications therefore must be
able to incrementally update the knowledge extracted from such data in an online fashion.
Finally, computations are heavy and their costs difficult to model. DM systems have to
take advantage of the aggregate resources to modern HPC architectures, applying smart
policies for resource management.

In our work we have focused on the performance of Data Mining. Starting from the
analysis of a common DM task, namely Association Rule Mining (ARM), we have designed
and implemented an algorithm for the most computational intensive part of ARM, i.e. Fre-
quent Set Counting. The Direct Count and Intersect (DCI) algorithm puts together many
optimizations proposed separately in an original way, achieving good performance results
with respect of state of the art algorithms either sequential or parallel. Such promising
results motivate further research in the field of efficient FSC. In particular we plan to
include more optimization into the DCI algorithm and increase the degree of adaptivity
to the dataset specific features (like density or length of patterns). Also, a wider class of
patterns are to be included in DCI, like sequences or trees and graphs.

105
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Streaming data pose the problem of incremental mining algorithms and of maintaining
updated the knowledge extracted along a period of time that exceeds the data production
rate. We studied a problem of Web Usage Mining (WUM) and designed a WUM system
(SUGGEST) that is able to personalize the pages of a web server, based on the analysis
of users behavior in past navigation sessions. SUGGEST, implemented as a module of
Apache, is tightly coupled with the web server and is able to deliver significant personalized
content with a limited overhead on the server ordinary performance. SUGGEST builds its
knowledge from an incremental graph partitioning algorithm that maintains clusters of
related pages , built according on users navigation patterns. One limitation of SUGGEST
regards its ability to handle dynamic web pages, which are becoming dominant in the web
scenario. We plan to extend SUGGEST functioning to such pages as well. Moreover, we
are currently working on the utilization of SUGGEST on production web servers in order
to test its actual performance on real life applications.

Large scale distributed systems are often the natural environment for DM applications.
It is actually here that the “move data” nightmare comes into play: could ever be a
feasible option that of moving huge volumes of data across geographic networks? Many
arguments have been addressed at pushing this option aside. We showed by means of a
simulation that what might sound as an unrealistic resort is in fact a viable option, in the
case where many DM computations and data transfers take place. We therefore studied
the high level architecture of a scheduler for distributed DM tasks that have to be executed
on large scale distributed architectures, like the Knowledge Grid. We devised a heuristic
scheduling policy and an original cost model for DM tasks, based on sampling as a method
for performance prediction. The results obtained from the simulation need to be extended
and tested on real Knowledge Grids.

Specific results found in solving single DM problems can be generalized and applied
to a wider class of algorithms and applications. For example most of the ideas in FSC
algorithms can effectively be applied to general Frequent Pattern Mining. The use of
vertical dataset representation and tidlist intersection as a method for support counting,
instead of horizontal database scan, is an approach that has already been shown to be
effective in itemset, sequence and tree mining. Similarly, access to data can be abstracted
form the physical details of accessing records on disk, encoding them in the most suitable
format for a specific DM task and possibly performing preprocessing like discretization or
taxonomy. High level support can be developed for the design of DM applications that
hide such details to users and generalize previous results. During fall 2002, we joined a
project for the design of a Data Mining Template Library, at the Rensselaer Polytechnic
Institute of Troy, NY, USA. under the supervision of prof. M. J. Zaki. The goal of the
project is to develop a systematic solution to a whole class of common data mining tasks in
massive, diverse, and complex datasets. The first step toward this goal is the development
of a prototype large-scale frequent pattern mining (FPM) toolkit, which is: i) Extensible
and modular for ease of use and customization to needs of analysts, ii) Scalable and high-
performance for rapid response on massive datasets.

The body of work presented in this thesis covers an apparently wide range of problems.
As we said several times, they are all concerned with the performance of DM systems. We
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would like to conclude this thesis with some general ideas that in our view and on the basis
of the work presented here, should be kept in mind for obtaining performance out of DM
systems:

Data adaptivity DM systems must have the ability to adapt themselves to the input
data peculiarities. No unique solution has ever proved to be the best one, in any DM
sub-domain. Efficient DM systems must provide multiple strategy solutions to all
DM problems faced with suitable heuristics to dynamically chose the most effective
strategy.

Resource adaptivity Efficient DM algorithms should always provide the ability of man-
aging different available computing resources. In our view DM algorithms should
natively provide support for disk resident data structures, transparent access to dis-
tributed resources and scalability both in time and space.

Generalization Patterns and the techniques to mine them should be as general as possible
in order to ensure that performance results are not limited to specific algorithms or
single kernels.

Performance Awareness Suitable cost models should be available to DM applications,
together with the control of the accuracy of the result found by the application. This
would allow for the possibility of trading performance with accuracy directly inside
the application.
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